
picoNet II

a wireless ad hoc network for mobile

handheld devices

by

Alex Song

Department of Information Technology and Electrical Engineering,

University of Queensland.

Submitted for the degree of

Bachelor of Engineering (Honours)

in the division of Electrical Engineering

October 2001

To Mum, Dad and Brian ...

15 Aurora Crescent

Kenmore

QLD 4069

Tel. (07) 3378 9764

October 19, 2001

The Head of School

School of Information Technology and Electrical Engineering

The University of Queensland

St Lucia, QLD 4072

Dear Professor Kaplan,

In accordance with the requirements of the degree of Bachelor of Engineering (Honours)

in the division of Electrical Engineering, I present the following thesis entitled“picoNet II

- A Wireless Ad Hoc Network for Mobile Handheld Devices“. This work was performed

under the supervision of Dr Mark Schulz.

I declare that the work submitted in this thesis is my own, except as acknowledged in the

text and footnotes, and has not been previously submitted for a degree at the University

of Queensland or any other institution.

Yours sincerely,

Alex Song.

i

Acknowledgements

ThepicoNet II project was the result of many hours of hard work. It would not have been

completed without the help of many people. The author sincerely wishes to thank:

Dr Mark Schulz for his guidance, insight and his unique way of telling me I am behind

schedule.

Robert and Laura Song for being the most supportive parents one could ever ask for.

David McCullough for his advice with the Linux kernel routing code.

Yih-Chun Hu for his help with the DSR protocol acknowledgement timeouts.

Andrew Over for his advice on kernel debugging techniques.

Dr Aleks Rakic for his advice on how to use aluminium foil to reduce the RF signal

strength.

Dr Vaughan Clarkson for lending me his iPAQ for this project.

and last but not the least, all my friends who proofread this thesis.

ii

Abstract

This thesis describes the design and implementation ofpicoNet II - a wireless ad hoc net-

work for mobile handheld devices. As users are increasingly mobile it is more and more

common for users to meet and communicate without prior planning, and in environments

where there is little or no networking infrastructure. Such a network is known as an ad hoc

network, where the network is of a dynamic nature without centralised administration.

Current technologies, such as Bluetooth and IEEE 802.11b, can form ad hoc networks

but is limited in that only single hop networks can be formed. This means that each node

can only act as a host, whereas in a multi-hop ad hoc network all nodes act as routers.

This thesis concentrated on the problem of adding multi-hop capabilities to existing ad

hoc network platforms such as IEEE 802.11b. This capability will allow a network to be

fully dynamic, self-organising and self-configuring.

The result was an implementation of the dynamic source routing protocol (DSR) for

TCP/IP on Linux, for both the PC and the Compaq iPAQ. The implementation enabled

the iPAQs and the PC to form a multi-hop ad hoc network with 802.11b wireless cards.

A DSR to IP gateway was also implemented and it allowed nodes in the DSR network to

access external IP networks. Existing unmodified TCP/IP applications were able to run

seamlessly on thepicoNet II network, providing a useful platform for future extensions.

iii

Contents

Acknowledgements ii

Abstract iii

List of Figures ix

List of Tables x

1. Introduction 1

1.1. The picoNet II Vision. 1

1.2. Problems with Current Mobile Networks. 1

1.3. Proposed Solution. 2

1.4. Thesis Structure. 2

2. Background 4

2.1. Mobile Networks . 4

2.1.1. Network Reference Models. 4

2.1.2. The Routing Concept. 7

2.1.3. Mobile Ad Hoc Network (MANET) Characteristics. 8

2.2. Current MANET Research. 8

2.3. Commercial Products. 9

2.3.1. Bluetooth. 9

2.3.2. IEEE 802.11b. 10

2.3.3. Current Products Comparison. 10

iv

3. picoNet II Specifications 12

3.1. Functional Overview of picoNet II. 12

3.2. Routing Protocol Requirements. 13

3.3. Software Requirements. 14

3.4. Hardware Requirements. 15

3.5. System Block Diagram. 15

3.6. Summary .15

4. System Selection 17

4.1. Operating System Selection. 17

4.1.1. Windows Pocket PC. 17

4.1.2. NetBSD. 17

4.1.3. Linux . 18

4.1.4. Operating System Choice. 18

4.2. Mobile Handheld Selection. 19

4.2.1. Palm OS based PDAs. 20

4.2.2. Pocket PC based PDAs. 20

4.2.3. Mobile Handheld Choice. 20

4.3. Wireless Interface Selection. 21

4.3.1. Bluetooth. 22

4.3.2. IEEE 802.11b. 22

4.3.3. Wireless Card Choice. 23

4.4. Summary .23

5. Routing Protocol Implementation 24

5.1. Routing Protocols. 24

5.1.1. Ad hoc On-demand Distance Vector (AODV) Routing. 24

5.1.2. Temporally Ordered Routing Algorithm (TORA). 25

5.1.3. Dynamic Source Routing (DSR). 25

v

5.1.4. Protocol Selection. 25

5.2. DSR Protocol Implementation Details. 26

5.2.1. Route Discovery. 26

5.2.2. Packet Forwarding. 27

5.2.3. Route Maintenance. 27

5.2.4. Packet Formats. 29

5.2.5. Protocol Optimisations. 31

5.2.6. Protocol Modifications. 31

5.3. System Design Choices. 32

5.3.1. The Netfilter Architecture. 33

5.3.2. Stack Partitioning. 33

5.3.3. Kernel Interfacing . 35

5.3.4. Development Environment. 36

5.4. Summary .36

6. System Evaluation 37

6.1. Comparison with Specifications. 37

6.2. Routing Protocol Performance. 38

6.2.1. Network Characteristics. 38

6.2.2. Routing Performance Measures. 38

6.2.3. Multi-hop Ad Hoc Capabilities. 41

6.2.4. Gateway Capabilities. 41

6.3. Personal Evaluation. 42

6.4. Summary .43

7. Future Developments 44

7.1. Implementation Improvements. 44

7.2. Routing Protocol Extensions. 44

7.3. Global Roaming. 45

vi

8. Conclusion 46

A. Source Code Listings 47

A.1. Software License. 47

A.2. Makefile .47

A.3. dsr.h .48

A.4. dsr_header.h. 49

A.5. dsr-kmodule.h. 52

A.6. dsr-kmodule.c. 53

A.7. dsr_debug.h. 64

A.8. dsr_debug.c. 65

A.9. dsr_input.h . 66

A.10.dsr_input.c . 66

A.11.dsr_output.h. 71

A.12.dsr_output.c. 72

A.13.dsr_queue.h. 86

A.14.dsr_queue.c. 87

A.15.dsr_route.h . 89

A.16.dsr_route.c . 89

References 97

vii

List of Figures

2.1. The OSI reference model and the Internet reference model. 5

2.2. Plantronics M1000 Bluetooth headset. 10

3.1. Network stack traversal inpicoNet II . 13

3.2. TCP/IP stack . 13

3.3. picoNet II system block diagram. 16

4.1. Pocket Internet Explorer running on Pocket PC. 18

4.2. Linux running QPE on the Compaq iPAQ. 19

4.3. Sony Clie running Palm OS. 20

4.4. Compaq iPAQ with 802.11b network card running Linux. 21

4.5. 3Com Bluetooth network interface card. 22

4.6. Lucent Orinoco 802.11b network card. 22

5.1. Route Discovery Process. 27

5.2. Packet Forwarding Process. 28

5.3. Route Maintenance Process. 29

5.4. DSR and IP packet structure. 30

5.5. IP Header Format. 30

5.6. Fixed Portion of the DSR Header. 30

5.7. Route Request Option Format. 31

5.8. Linux networking layers for TCP/IP. 34

viii

5.9. Netfilter hooks for IPv4. 34

6.1. Some tested network topologies. 41

6.2. iPAQ with its wireless card wrapped in aluminium foil. 42

ix

List of Tables

2.1. Comparison of table-driven and on-demand protocols. 9

2.2. Features of commercial ad hoc products. 11

6.1. Network Characteristics. 38

6.2. DSR Protocol Delays. 39

6.3. DSR Packet Data Overhead. 39

6.4. DSR Packet Overhead. 40

6.5. DSR Protocol Parameters. 40

x

1. Introduction

This chapter introduces the thesis project and the vision it has. It outlines the problem this

thesis addressed and the solution developed. The chapter concludes with a description of

the thesis document structure.

From the“II” in picoNet II one can correctly assume that this thesis was a continuation of

a previous thesis project.picoNet II was indeed a continuation ofpicoNet ([1, 2]) but only

in the sense of the goal of the thesis and not the design or implementation.

1.1. The picoNet II Vision

Pervasive computing is computing in an environment where users will be able to access

information without going out of their way. To achieve this, the users must be surrounded

by technology without knowing so. Pervasive computing is a trend that is currently driv-

ing, and will continue to drive many technologies.

The vision ofpicoNet II is to create a pervasive network where the underlying technology

is invisible and transparent to the user. To achieve this,picoNet II will be designed to be

compatible with existing networks and networking standards. It will also be designed to

work on commonly available hardware and software platforms.

1.2. Problems with Current Mobile Networks

As users are increasingly mobile it is more and more common for users to meet and

communicate without prior planning, and in environments where there is little or no net-

working infrastructure. For example, business meetings often require documents to be

exchanged and it could happen in a cafe or at the airport. In such situations it is difficult

1

CHAPTER 1. INTRODUCTION 1.3. PROPOSED SOLUTION

and inconvenient to set up a local area network (LAN) as the network will need to be

created on the fly. Such a network is known as an ad hoc network where the network is of

a dynamic nature without centralised administration.

Current technologies can form ad hoc networks but is limited in that only single hop net-

works can be formed. This means that each node can only act as a host sending directly to

the destination. In a multi-hop ad hoc network, all nodes act as routers and neighbouring

nodes will forward packets to the final destination.

This thesis concentrated on the problem of adding multi-hop capabilities to existing ad

hoc network platforms.

1.3. Proposed Solution

An ad hoc network is a network that can be formed without the need for any preexisting

networking infrastructure. Mobile ad hoc networks (MANET) [3] describes such a net-

work. The IETF MANET Working Group specifies many routing protocols which will

allow the formation of mobile ad hoc networks.

FIXME.

This thesis describes the design and implementation ofpicoNet II, a mobile ad hoc network

that enables handheld devices to form a dynamic, self-organising and self-configuring net-

work. To be in line with thepicoNet II vision of being compatible with existing networks

and networking standards,picoNet II will be designed to be compatible with TCP/IP1 .

1.4. Thesis Structure

This thesis dissertation describes the design, implementation and testing of an ad hoc

network,picoNet II.

Chapter2 covers network models and theory relevant to mobile networks. It will also pro-

vide reviews on current MANET research and commercial ad hoc networking products.

Chapter3 specifies the features and functionalities of thepicoNet II system. The speci-

fication will state the requirements of a mobile ad hoc network and will also specify in

detail, parts of thepicoNet II system.

1Transmission Control Protocol/Internet Protocol

2

CHAPTER 1. INTRODUCTION 1.4. THESIS STRUCTURE

Chapter4 will describe the hardware and software platform used and how that platform

was chosen for thepicoNet II project.

Chapter5 will describe the software implementation of thepicoNet II system, namely the

routing protocol. It will also cover routing protocol selection, routing protocol operation

and how the implementation interfaces with the chosen platform.

ThepicoNet II system is evaluated in Chapter6 against the specifications outlined in Chap-

ter 3. Performance issues and functionality of the implementation will be covered in the

evaluation.

Chapter7 will suggest improvements and extensions for future development and the thesis

will conclude with a brief summary in Chapter8.

3

2. Background

This chapter reviews theory and technologies which are related to thepicoNet II project.

Firstly, background information will be provided on network models and theory relevant

to ad hoc networks. Then a review on current research in ad hoc networks will be pre-

sented. Finally the chapter will review and compare current ad hoc networking products.

2.1. Mobile Networks

A mobile network consists of mobile devices, herein simply referred to as "nodes", which

are free to move about [3]. The way in which mobile networks operate is fundamentally

different to traditional fixed networks. In order to understand these differences, and the

challenges of designing and implementing a mobile network, some background informa-

tion needs to be presented. Network models and the concept of routing will be presented

first. Then the characteristics of mobile ad hoc networks will be compared to fixed wire

networks.

2.1.1. Network Reference Models

A computer network is a collection of computers connected by some link which supports

data transfer. Designing a computer network to provide various types of connectivity

across large numbers of hosts imposes many challenges to the designer. Network refer-

ence models help designers deal with these design challenges by abstracting functionality

into a layered architecture. Two important network architectures, the OSI reference model

and the Internet reference model, will be discussed in the following sections.

4

CHAPTER 2. BACKGROUND 2.1. MOBILE NETWORKS

Application

Host-to-network

Internet

Transport

Application

Transport

Session

Presentation

Network

Link

Physical

OSI Internet

Figure 2.1.: The OSI reference model and the Internet reference model

2.1.1.1. The OSI1 Reference Model

The OSI model is shown in Figure2.1 and it is based on a proposal developed by the

International Standards Organisation (ISO). The model is called ISO Open Systems In-

terconnection Reference Model because it deals with connecting open systems - that is,

systems that are open for communication with other systems [4].

There are seven layers in the OSI model and they are described below.

Physical Layer The physical layer forms the lowest layer in the OSI model and it is

concerned with transmitting raw bits over a communications channel. The design issues

in this layer are mostly to do with mechanical, electrical and procedural interfaces of the

underlying transmission medium.

Link Layer The task of the link layer is to group raw bits into frames and provide a

channel which is free of undetected errors to the network layer. This is accomplished

via error detection and correction schemes, and acknowledgements. The link layer also

regulates access to the physical layer and this is sometimes described as a sublayer called

the MAC2 layer.

1Open Systems Interconnection
2Medium Access Control

5

CHAPTER 2. BACKGROUND 2.1. MOBILE NETWORKS

Network Layer The network layer deals with how one packet gets from the source to

the destination. This process is known as routing. This layer is also responsible for

connecting networks of different types together, providing a host-to-host connectivity to

the upper layers.

Transport Layer The main purpose of the transport layer is to provide an end-to-end

communication channel to the upper layers. It deals with segmenting data streams, flow

control and the reliability of data transfers.

Session Layer The session layer provides users on different machines with the ability

to establish a session between them. The layer manages connections within the session,

which may be one way or two way.

Presentation Layer This layer performs functions which are often required in network

communications. These functions include integer conversions, data compression and en-

coding, and encryption.

Application Layer The application layer sits between the users and the network re-

sources and it provides users with network functionality via applications.

2.1.1.2. The Internet Reference Model

The Internet reference model, also known as the TCP/IP reference model, is a four layer

network model. Figure2.1shows the Internet model and the OSI reference model side by

side.

The four layers of the Internet model are described below:

Host-to-network Layer This layer provides a standard interface of the underlying hard-

ware to the upper layers. It’s functionality is similar to the combination of the physical

and link layers of the OSI model.

Internet Layer The Internet layer is analogous to the OSI network layer and provides

host-to-host connectivity and routing between multiple network technologies.

6

CHAPTER 2. BACKGROUND 2.1. MOBILE NETWORKS

Transport Layer The transport layer provides end-to-end connectivity like its OSI counter

part. This layer defines a reliable connection oriented protocol TCP (Transmission Con-

trol Protocol), which has flow control, and another protocol UDP (User Datagram Proto-

col), which is an unreliable connection-less protocol.

Application Layer The application layer’s function is similar to the combination of the

application, presentation and session layers of the OSI model. The session and presenta-

tion functionality is still present in this but but it is not clearly defined.

2.1.1.3. The OSI model vs The Internet Model

As seen from previous sections, both the OSI model and the Internet model are abstrac-

tions of networking functionality. The models differ in the way the abstraction is done, as

the Internet model has less layers yet describing the same functionality. The OSI model is

more general as it can describe any network, but due to many reasons, both technical and

non-technical, it was never implemented. The Internet model on the other hand is used

widely today. Since most of the networking technology is based on the Internet model, it

will be used to define thepicoNet II system.

2.1.2. The Routing Concept

Routing is defined as the process of finding a path from a source to some arbitrary des-

tination on the network. This process operates in the Internet layer so packets can be

forwarded across networks with different transmission mediums. The Internet is a col-

lection of numerous networks and subnetworks, which are interconnected by computers

which perform routing. Computers which perform routing are known as routers, and a

router which routes between a subnet and an external network is known as a gateway.

Traditional routing assumes that all computers on the network are static or semi-static.

Therefore the router only need to react to changes caused by failure of network links or

other routers. So routers conventionally exchange routing information with other routers

by periodically sending out routing specific control messages. Due to the fact that the

topology of a fixed network are semi-static, the amount of control messages can be kept

to a minimum.

Many assumptions for fixed networks are not valid for mobile networks as there are fun-

damental differences in how they operate. These differences are discussed in the next

section.

7

CHAPTER 2. BACKGROUND 2.2. CURRENT MANET RESEARCH

2.1.3. Mobile Ad Hoc Network (MANET) Characteristics

“A "mobile ad hoc network" (MANET) is an autonomous system of mobile routers (and

associated hosts) connected by wireless links–the union of which form an arbitrary graph.

The routers are free to move randomly and organise themselves arbitrarily; thus, the net-

work’s wireless topology may change rapidly and unpredictably. Such a network may

operate in a stand alone fashion, or may be connected to the larger Internet.” [5]

The fundamental difference between fixed networks and MANET is that the computers in

a MANET are mobile. Due to the mobility of these nodes, there are some characteristics

that are only applicable to MANET. Some of the key characteristics are described below

[3] :

1. Dynamic Network Topologies: Nodes are free to move arbitrarily, meaning that the

network topology, which is typically multi-hop, may change randomly and rapidly

at unpredictable times.

2. Bandwidth constrained links: Wireless links have significantly lower capacity than

their hardwired counterparts. They are also less reliable due to the nature of signal

propagation.

3. Energy constrained operation: Devices in a mobile network may rely on batteries

or other exhaustible means as their power source. For these nodes, the conservation

and efficient use of energy may be the most important system design criteria.

The MANET characteristics described above imply different assumptions for routing al-

gorithms as the routing protocol must be able to adapt to rapid changes in the network

topology. They also present different optimisation parameters such as bandwidth over-

head and energy usage. A considerable amount of research has been done in the area of

MANET, and this is presented below.

2.2. Current MANET Research

Mobile ad hoc networks, or MANET, are fundamentally different to traditional wired net-

works as wired networks are assumed to be stationary and static. This imposes different

design requirement and constraints on routing protocols for MANET.

There are two categories of routing protocols: table-driven and on-demand routing. In

table-driven routing protocols, routing information is periodically advertised to all nodes

8

CHAPTER 2. BACKGROUND 2.3. COMMERCIAL PRODUCTS

Table-driven On-demand
Availablilty of Routing
Information

Immediately from route
table

After a route discovery

Route Updates Periodic Advertisments When requested
Routing Overhead Proportional to the size of

the network regardless of
network traffic

Proportional to the number
of communicating nodes
and increases with in-
creased node mobility

Table 2.1.: Comparison of table-driven and on-demand protocols

so all nodes have an up to date view of the network. Alternatively, on-demand routing

protocols only discovers a new route when it is required. Hybrid routing protocols also

exist and they try to achieve an efficient balance between both categories of protocols

[2, 6]. Table2.1shows a comparison between the two methodologies.

It is clear that on-demand protocols are more suited for mobile handheld devices as net-

work bandwidth and battery power is limited. This saving in network bandwidth and

energy consumption is a tradeoff for up to date routing information. Generally speak-

ing, on-demand routing protocols have longer route discovery delays than table-driven

protocols. On-demand routing protocols will be discussed in detail in chapter5.

2.3. Commercial Products

There are a number of wireless products available, but only a few technologies have ad

hoc capabilities. Products based of these technologies will be discussed below.

2.3.1. Bluetooth

Bluetooth is a technology that promises fast, secure, point-to-point wireless communi-

cations over short distances (approximately 10 metres) for devices as diverse as mobile

phones, consumer electronics appliances and desktop computers [1, 7, 8]. It uses spec-

trum in the unlicensed ISM3 band of 2.4 to 2.48GHz. Besides being a hardware standard,

Bluetooth defines a protocol stack that allows for hierarchical ad hoc networking in the

form of “piconets”, in which Bluetooth devices form themselves into point-to-multipoint

picocells of seven slaves under the control of one master. Multiple piconets in overlapping

coverage areas form “scatternets”.

3Industrial, Scientific and Medical

9

CHAPTER 2. BACKGROUND 2.3. COMMERCIAL PRODUCTS

Figure 2.2.: Plantronics M1000 Bluetooth headset

Although Bluetooth has been standardised for quite some time, the devices are just begin-

ning to become available. The Bluetooth devices which are currently available are only

single hop devices as the formation of “scatternets” is not specified in the current ver-

sion of the Bluetooth standard. Figure2.2 shows a wireless headset based on Bluetooth

technology from Plantronics.

2.3.2. IEEE 802.11b

IEEE 802.11b is wireless local area network communications standards that operates in

the 2.4GHz band at data rates of 1 to 11Mbps and distances of 25 to 550 metres [9]. In

an IEEE 802.11 network, there are two possible modes: ad hoc mode, where all nodes in

the network must be within range of each other, and the infrastructure mode, in which all

inter-node communication must pass via access points.

The ad hoc mode allows nodes to form an ad hoc network, but the communication is

limited to single hop, with no multi-hop capabilities. Since the IEEE 802.11 standard

only defines the host-to-network layer, it is up to upper layer protocols to incorporate

multi-hop capabilities. Unlike Bluetooth, IEEE 802.11b products are widely available

and are currently used by many corporations and institutions.

2.3.3. Current Products Comparison

From the product comparison shown in Figure2.2, it can be seen that current ad hoc net-

working solutions are limited to single hop operation. The network range can be slightly

extended with the use of access points but that requires preexisting networking infrastruc-

ture to be present.

picoNet II provides a solution to this problem by adding multi-hop routing capabilities to

existing ad hoc networks. This will allow a multi-hop network to be deployed with no

10

CHAPTER 2. BACKGROUND 2.3. COMMERCIAL PRODUCTS

IEEE 802.11b Bluetooth
Bit Rate 1 - 11 Mbps 1 Mbps
Range 25 - 550 m 10 m
Ad Hoc Capabilities? Only single hop, not

multi hop
Only single hop (Multi hop
not specified)

Cost ~AUD$300 ~AUD$300

Table 2.2.: Features of commercial ad hoc products

preexisting networking infrastructure. It will also allow a multi-hop ad hoc network to

form as an extension to an existing network. Chapter3 will outline the specifications for

thepicoNet II system.

11

3. picoNet II Specifications

This chapter specifies the features and functionality ofpicoNet II, a wireless ad hoc net-

work for mobile devices. The overall functionality will be outlined first followed by spec-

ifications of the routing protocol, hardware, and software platform. Finally the system

block diagram will be presented.

3.1. Functional Overview of picoNet II

The function of thepicoNet II system is to provide multi-hop capabilities to existing ad

hoc networks. For compatibility purposes this functionality should be implemented on the

TCP/IP network standard. Any two nodes in the system should be able to communicate

across a wireless medium, with end-to-end connectivity achieved by point-to-point packet

forwarding at intermediate router nodes [1]. The system should be able to dynamically

adapt to node mobility, and nodes entering and leaving the network. Figure3.1 shows

how packets traverses through the TCP/IP stack in thepicoNet II system. The multi-hop

routing protocol operates at the Internet layer (shaded in grey) of the stack.

ThepicoNet II systems assumes that the network is relatively small, with a network diam-

eter1 of around 15. This assumption eases the scalability requirement as the system is just

a proof of concept.

There are three major sections of the system that needs to be specified and they are routing

protocol, hardware and software. The hardware and software specifications will depend

on the routing protocol requirements and will also be interdependent. The following

sections will describe the specifications of the routing protocol, hardware, and software

in detail.
1Network diameter is the maximum number of hops from one end of the network to the other.

12

CHAPTER 3. PICONET II SPECIFICATIONS 3.2. ROUTING PROTOCOL REQUIREMENTS

Application

Host-to-network

Internet

Transport

Application

Host-to-network

Internet

Transport

Application

Host-to-network

Internet

Transport

Application

Host-to-network

Internet

Transport

Source Node Destination NodeIntermediate Node Intermediate Node

Figure 3.1.: Network stack traversal inpicoNet II

Application (Telnet, FTP, DNS)

Host-to-network (802.11, Bluetooth)

Internet (IP)

Transport (TCP, UDP)

Figure 3.2.: TCP/IP stack

3.2. Routing Protocol Requirements

The function of the routing protocol is to provide multi-hop capabilities. The routing

protocol and its implementation must be fully compatible with existing TCP/IP networks.

To achieve this compatibility, the routing protocol will need to operate in the Internet layer

maintaining compatibility with the transport layer and the host-to-network layer. Figure

3.2 shows this structure with the Internet layer shaded in grey. This compatibility will

allow existing applications, transport protocols and network interfaces to operate without

modifications.

There are some key requirements in mobile ad hoc networks (MANET) and they are listed

below [3] :

• Distributed operation: This is an obvious and necessary property of MANET.

• Loop-freedom: Not a required property but desirable for any routing protocol, as it

avoids packets spinning around in the network causing performance to degrade.

• On demand operation: Instead of maintaining routing information between all nodes

at all times, the routing information is generated on a demand or need basis. Al-

though it may increase the route discovery delay, it utilises network energy and

13

CHAPTER 3. PICONET II SPECIFICATIONS 3.3. SOFTWARE REQUIREMENTS

bandwidth resources more efficiently. This efficiency is especially important for

mobile devices where bandwidth and energy resources are limited.

There are also some performance measures of ad hoc routing protocols and they are de-

scribed below:

• Route acquisition time: A measure of the time taken to discover a new route.

• Packet data overhead: The amount of extra data exchanged for ad hoc routing to

operate.

• Packet overhead: The number of extra packets sent by the ad hoc routing protocol.

These performance measures ultimately affect the end-to-end delay experienced by users.

The routing protocol should be selected to be meet the requirements of MANET with

minimised end-to-end delay.

3.3. Software Requirements

The key design philosophy behindpicoNet II is compatibility, and the software require-

ments will reflect that philosophy. Routing protocols are implemented as a part o the

operating systems (OS) and often inside the kernel for increased performance. Therefore

the software requirements will be in the context of the operating system.

The following is a list of requirements for the operating system:

• Network enabled: This is an obvious and needed requirement. It means the OS

must have support for networking devices and more specifically a TCP/IP imple-

mentation.

• Network applications: This is required for the system to demonstrate seamless

multi-hop operation.

• Hardware compatibility: The OS must be available for the hardware platform and

must have driver support for the wireless network interfaces.

• Access to source code: The routing protocol will be implemented inside the oper-

ating system, so it is essential to have access to the operating system source code.

Without the source code the routing protocol will need to be implemented in user

space, which will result in incompatibilities with existing applications.

14

CHAPTER 3. PICONET II SPECIFICATIONS 3.4. HARDWARE REQUIREMENTS

3.4. Hardware Requirements

The hardware requirements can be derived from the software specifications as their re-

quirements are interdependent. These requirements are listed below:

• Mobile and portable.

• Support for wireless network interfaces.

• Compatible with chosen operating system.

• Widely available.

The wireless network interface should be based on radio frequency (RF) technology as

they do not require line-of-sight. Other wireless technologies like infrared, which require

line-of-sight, are not well suited to ad hoc applications as communication depends on the

orientation of the user and the device.

3.5. System Block Diagram

The requirements outlined in previous sections can summarised in a system block dia-

gram shown in Figure3.3. The system block diagram shows the structure of the TCP/IP

stack in relation to the operating system and the underlying hardware. Various parts of the

TCP/IP stack will already have been implemented in the operating system. The IP2 layer,

which is shaded in grey, will be where thepicoNet II implementation will reside. It is

logical forpicoNet II to be at the IP layer since all routing is performed there. No changes

will be made to the interface between the IP layer and the other layers, as all changes will

be internal to the IP layer. This design will allowpicoNet II to be completely compati-

ble with existing systems, allowing it to operate with existing network technologies and

applications seamlessly.

3.6. Summary

The specifications for the routing protocol, hardware and software of thepicoNet II sys-

tem was outlined in this chapter. It was specified that the routing algorithm should be

2Internet Protocol

15

CHAPTER 3. PICONET II SPECIFICATIONS 3.6. SUMMARY

 Operating System

Application

Host-to-network

Internet

Transport

Hardware Platform

Applications

Other Devices

Drivers

Figure 3.3.:picoNet II system block diagram

implemented for TCP/IP in the Internet layer within the operating system. The system

should also be implemented on mobile and portable hardware platforms. The selection of

the hardware and software platform will be described in the following chapter.

16

4. System Selection

This chapter will describe the hardware and software used and how that platform was

chosen for thepicoNet II project. Firstly, operating system selection will be described in

detail followed by mobile handheld and wireless interface selection.

4.1. Operating System Selection

This section will describe a few operating systems which meet the software requirements

outlined in the previous chapter. The advantages and disadvantages of each operating

system are detailed below.

4.1.1. Windows Pocket PC

Pocket PC is a commercial operating system based on Windows which is pre-installed

on many handheld computers on the market today. The operating system is network en-

abled with many network applications available. One such application is Pocket Internet

Explorer and it is shown in Figure4.1. The Pocket PC OS also has driver support for

wireless network interfaces.

Pocket PC, being designed for the consumer market, does not have network routing sup-

port built into the OS. The source code to the Pocket PC operating system is available for

developers, but due to the commercial nature of the OS, at a cost.

4.1.2. NetBSD1

NetBSD is a UNIX operating system derived from BSD and it is available on many hard-

ware platforms including handheld computers and embedded systems [10]. Being a UNIX
1Berkeley Software Distribution

17

CHAPTER 4. SYSTEM SELECTION 4.1. OPERATING SYSTEM SELECTION

Figure 4.1.: Pocket Internet Explorer running on Pocket PC

operating system, NetBSD is a network enabled OS with full TCP/IP support and network

routing capabilities. It also has driver support for wireless network interfaces as well as

many networking applications. The source code for NetBSD is freely available under the

BSD license ([11]). The GNU2 development environment is used for NetBSD.

4.1.3. Linux

Linux is another UNIX operating system and, like NetBSD, it is available on many dif-

ferent hardware platforms from PCs to handheld computers. Like other UNIX operating

systems, Linux supports TCP/IP, routing and network applications. There is also support

for various wireless network interfaces. An environment called the QT Palmtop Envi-

ronment (QPE) is designed for handheld computers running Linux and a screen shot is

shown in Figure4.2. The source code is fully available under the GPL licence ([12]) and

the GNU programming tools are used for kernel development.

4.1.4. Operating System Choice

All three operating systems met the requirements outlined in chapter3. The selection

process was based on two criterion, ease of implementation and cost. This rules out the

Pocket PC operating system straight away as the source code and development tools are

not freely available.

2GNU is Not UNIX

18

CHAPTER 4. SYSTEM SELECTION 4.2. MOBILE HANDHELD SELECTION

Figure 4.2.: Linux running QPE on the Compaq iPAQ

Of the remaining choices, NetBSD and Linux, there were not great differences as both

operating systems are open source UNIX operating systems. Linux was chosen in the end

for reasons listed below:

• A new packet mangling framework called netfilter, a new feature for Linux 2.4,

which will allow the routing protocol to be implemented with more ease. The net-

filter architecture will be discussed in detail in section5.3.1.

• I have had previouse experience with the Linux OS and no experience with NetBSD.

Choosing Linux will result in a smoother learning curve, reducing development

time.

• On handheld platforms, Linux is actively developed by Compaq and their research

labs, and this active development will result in a more stable and better supported

OS.

4.2. Mobile Handheld Selection

This section will describe handheld computers which meet the hardware requirements

outlined previously and has support for Linux. The advantages and disadvantages of each

handheld platform are detailed below.

19

CHAPTER 4. SYSTEM SELECTION 4.2. MOBILE HANDHELD SELECTION

Figure 4.3.: Sony Clie running Palm OS

4.2.1. Palm OS based PDA 3s

Palm OS based handheld computers such as the Sony Clie shown in Figure4.3are widely

available [13]. A variant of Linux called uClinux has been successfully ported to a few

Palm OS devices such as Palm IIIe and the Handspring Visor [14]. uClinux or micro-

controller Linux is a derivative of the Linux 2.0 kernel for micro-controllers without a

MMU4 [15]. There are currently many wireless network interfaces available for Palm OS

based devices, including IEEE 802.11b and Bluetooth. At the time of hardware selection

these wireless products were only announced, but not available.

4.2.2. Pocket PC based PDAs

Pocket PC based PDAs such as the Compaq iPAQ, shown in Figure4.4, are also widely

available. The Pocket PC devices are more powerful than the Palm OS devices as they

have faster CPUs and have more storage space, but shorter battery life. There are many

different wireless network solutions available for Pocket PC based handheld comput-

ers. Some handhelds, like the Compaq iPAQ, have PCMCIA5 adaptors which allows

any PCMCIA wireless network card to be used, so long as drivers exist. Full featured

Linux is available on most Pocket PC based devices at handhelds.org ([16]).

4.2.3. Mobile Handheld Choice

Both types of handheld computers had the functionality described in chapter3. The selec-

tion criteria was again, ease of implementation and cost. There are no major differences

3Personal Digital Assistant
4Memory Management Unit
5Personal Computer Memory Card International Association

20

CHAPTER 4. SYSTEM SELECTION 4.3. WIRELESS INTERFACE SELECTION

Figure 4.4.: Compaq iPAQ with 802.11b network card running Linux

in the functionality between the two families of handheld computers. Despite the higher

cost of Pocket PC PDAs, it was chosen over the Palm OS devices for its ease of imple-

mentation. The reasons are discussed below:

• Palm OS devices only supported uClinux which lacked many features in Linux 2.4

such as netfilter.

• Pocket PC devices had PCMCIA support which provided a wider range of wireless

network interfaces.

• Linux for Pocket PC devices was more actively developed than uClinux for Palm

OS devices.

There are many different Pocket PC devices and the Compaq iPAQ, which is ARM6 based,

was chosen over the other devices because of its PCMCIA support and its extensive sup-

port for the Linux operating system. It must be noted that Compaq Australia sponsored

this thesis project by providing two iPAQs.

4.3. Wireless Interface Selection

The wireless interface selection is narrowed down to PCMCIA cards with driver support

for Linux running on the Compaq iPAQ.

6Advanced RISC Machines

21

CHAPTER 4. SYSTEM SELECTION 4.3. WIRELESS INTERFACE SELECTION

Figure 4.5.: 3Com Bluetooth network interface card

Figure 4.6.: Lucent Orinoco 802.11b network card

4.3.1. Bluetooth

Bluetooth network cards are relatively new to the market and at the time of selection there

was only driver support for Windows running on PCs. There was also compatibility issues

between Bluetooth network cards from different vendors. Choosing Bluetooth as the

wireless network interface forpicoNet II could have introduced unnecessary difficulties.

A newly released Bluetooth network card from 3Com is shown in Figure4.5.

4.3.2. IEEE 802.11b

In contrast to Bluetooth, IEEE 802.11b is a more mature technology with driver support

for a variety of operating system. There is strong support for 802.11b network cards in

Linux running on PCs and the support is more limited on Linux for the iPAQ as only two

chipsets are supported. The supported chipsets are from Lucent and Intersil. The Lucent

IEEE 802.11b network card is shown in Figure4.6. At the time of research the Lucent

drivers were more mature and had ad hoc (ad hoc in the 802.11 sense, single hop only)

support where the Intersil driver was only functional in infrastructure mode.

22

CHAPTER 4. SYSTEM SELECTION 4.4. SUMMARY

4.3.3. Wireless Card Choice

The Bluetooth network cards were ruled out due to its lack of Linux driver support. Out

of the two IEEE 802.11b cards, the Lucent network card was chosen as it had the func-

tionality required at the time of selection.

4.4. Summary

This chapter covered the selection process for thepicoNet II system. The chosen platform

was the Compaq iPAQ handheld computer running the Linux operating system. The

Lucent IEEE 802.11b network card was chosen to provide wireless connectivity. The

selection and implementation of the routing protocol will be discussed in the next chapter.

23

5. Routing Protocol Implementation

This chapter represents the core of the thesis project as it describes the implementation

of the routing protocol. Firstly, several MANET routing protocols will be discussed and

a protocol will be chosen to be implemented. Then the chosen routing protocol will be

discussed in detail and any changes made to the routing protocol will also be presented.

Finally, the chapter will describe the choices made in implementing this routing protocol,

and more specifically how the implementation interfaces with the Linux operating system.

5.1. Routing Protocols

As discussed earlier in section2.2, on-demand routing protocols are better suited to ad

hoc networks formed by handheld devices. In the following section, several on-demand

routing protocols will be compared.

5.1.1. Ad hoc On-demand Distance Vector (AODV) Routing

Ad hoc On-demand Distance Vector Routing (AODV) is an on-demand version of the

table-driven Dynamic Destination-Sequenced Distance-Vector (DSDV) protocol [6]. To

find a route to the destination, the source broadcasts a route request packet. This broadcast

message propagates through the network until it reaches an intermediate node that has

recent route information about the destination or until it reaches the destination.

When intermediate nodes forwards the route request packet it records in its own tables

which node the route request came from. This information is used to form the reply

path for the route reply packet as AODV uses only symmetric links. As the route reply

packet traverses back to the source, the nodes along the reverse path enter the routing

information into their tables. Whenever a link failure occurs, the source is notified and a

route discovery can be requested again if needed.

24

CHAPTER 5. ROUTING PROTOCOL
IMPLEMENTATION

5.1. ROUTING PROTOCOLS

5.1.2. Temporally Ordered Routing Algorithm (TORA)

The Temporally Ordered Routing Algorithm (TORA) is a highly adaptive, efficient and

scalable routing algorithm [6]. It is a source-initiated on-demand protocol and it finds

multiple routes between the source and the destination. TORA is a fairly complicated

protocol but its main feature is that when a link fails the control messages only propagates

around the point of failure. While other protocols need to re-initiate a route discovery

when a link fails, TORA would be able to patch itself up around the point of failure. This

feature allows TORA to scale up to larger networks but has higher overhead for smaller

networks.

5.1.3. Dynamic Source Routing (DSR)

The Dynamic Source Routing (DSR) protocol is a source-routed on-demand protocol

[6, 17]. There are two major phases for the protocol: route discovery and route mainte-

nance. The key difference between DSR and other protocols is the routing information is

contained in the packet header. Since the routing information is contained in the packet

header, the intermediate nodes do not need to maintain routing information. An intermedi-

ate node may wish to record the routing information in its tables to improve performance,

but this is not mandatory.

Another feature of DSR is that it supports asymmetric links as a route reply can be pig-

gybacked onto a new route request packet. DSR is suited for small to medium sized

networks as its packet overhead (not packet data overhead) can scale all the way down to

zero when all nodes are relatively stationary. The packet data overhead will increase sig-

nificantly for networks with larger hop diameters as more routing information will need

to be contained in the packet headers.

5.1.4. Protocol Selection

Out of all the routing protocols, TORA was the most complex and also the most scalable.

These properties of TORA may be ideal for an ad hoc routing protocol, but it was not

preferred for this thesis as ease of implementation was one of the key selection factors.

The main difference between AODV and DSR was the way the routing information was

exchanged. In AODV the information was stored at each node where as in DSR the

routing information was included in each packet. Simulation results have shown that

25

CHAPTER 5. ROUTING PROTOCOL
IMPLEMENTATION

5.2. DSR PROTOCOL IMPLEMENTATION
DETAILS

AODV and DSR have similar performance with DSR being more efficient with higher

node mobility and AODV more efficient at lower node mobility [18].

All three protocols met the criteria outlined in section3.2, and DSR was chosen because it

was the most efficient in terms of bandwidth requirements and hence energy consumption.

The implementation of the DSR protocol will be detailed in the next section.

5.2. DSR Protocol Implementation Details

This section describes the implementation details of the DSR protocol, the operating sys-

tem specific detail will be described next, in section5.3. The DSR protocol is based on

the Internet-draft from the MANET Working Group ([19]).

Firstly, the operation of the protocol, namely route discovery, packet forwarding and route

maintenance, will be described followed by the description of the packet formats and

protocol optimisations. Lastly the modifications made to the protocol will be discussed,

and this will include extensions and changes made to the protocol.

5.2.1. Route Discovery

Route discovery is the process in which a source node discovers a route through the net-

work to some arbitrary destination node. Every node has a route cache which contains

recent routes to other nodes on the network. If a node needs to send information to some

destination and a route is found in the route cache then the node will use that route. Oth-

erwise the source node will initiate a route discovery process by sending a route request

packet across the network. Figure5.1illustrates the route discovery process and the prop-

agation of route request packets.

Every route request packet has a unique identification number. Nodes cache this identifi-

cation number and discards subsequent route request packets with the same identification

number. In the example shown in Figure5.1, node D received the route request from

node C first and it discarded the route request from node B. As the route request propa-

gates through each node, each node adds its own address to the route request if it is not

already present. This ensures loop-free routes.

When the route request reaches the final destination, a route reply packet is returned to

the source node from the destination node. For asymmetric links the route reply may be

26

CHAPTER 5. ROUTING PROTOCOL
IMPLEMENTATION

5.2. DSR PROTOCOL IMPLEMENTATION
DETAILS

id=2
CDE, id=2

A

B

C

D

E

F

id=2 B, id=2

C, id=2

CD, id=2

Figure 5.1.: Route Discovery Process

piggybacked onto a new route request. In our system where 802.11b links are bidirec-

tional, the route reply will simply contain the route recorded in the route request packet

in reverse order. In the event that the final destination is not present or completely out of

range, route requests will be resent by the source node after a timeout which backs off

exponentially.

5.2.2. Packet Forwarding

When a node wishes to send packets and has a route to the destination, it adds the full

source route to the each of the packets. Along with the source route the number of seg-

ments left is also added and source node will initialise this number to the length of the

source route. The number of segments left is the number of hops left for the packet to

reach its destination and it gets decremented each hop. It is used for intermediate nodes

to index the next hop address from the source route so the packet can be forwarded to the

next node. The packet forwarding process is illustrated in Figure5.2.

5.2.3. Route Maintenance

As nodes in a MANET move around, links will be down and routes need to be maintained.

This is called route maintenance.

During packet forwarding every node is responsible confirming that the packet was re-

ceived by the next hop. There are three ways to get this acknowledgement and they are

27

CHAPTER 5. ROUTING PROTOCOL
IMPLEMENTATION

5.2. DSR PROTOCOL IMPLEMENTATION
DETAILS

CDE, n=3

CDE, n=0

A

B

C

D

E

F

CDE, n=2

CDE, n=1

Figure 5.2.: Packet Forwarding Process

listed below:

• MAC layer acknowledgement: this is supplied by the underlying MAC layer and

technologies like IEEE 802.11b support it.

• Passive acknowledgement: this confirmation comes from nodes overhearing the

next node forwarding the packet. It can be used on every hop except the last hop.

This requires the network interfaces to work in promiscuous mode so it can overhear

packets sent to other nodes.

• Network layer acknowledgement: this is when the node explicitly request a DSR

specific acknowledgement to be returned by the next hop.

Although the most inefficient, network layer acknowledgements were used forpicoNet II

as it was the easiest to implement. MAC layer acknowledgements require interfacing the

routing code with the network interface driver which would introduce unnecessary work.

Passive acknowledgements were not feasible as there was little support for promiscuous

mode from the network drivers.

When no acknowledgement has been received by the node sending a packet after a set

timeout, the packet is resent after a timeout a set number of times. If no acknowledgement

is received after the retransmission,then a route error packet will be sent back to the source

node to indicate that the link is broken. In the example shown in Figure5.3, the link from

node D to node E is broken so node D will send a route error packet back to node A

28

CHAPTER 5. ROUTING PROTOCOL
IMPLEMENTATION

5.2. DSR PROTOCOL IMPLEMENTATION
DETAILS

CDE, n=3

A

B

C

D

E

F

CDE, n=2

Figure 5.3.: Route Maintenance Process

indicating that link D-E is broken. Upon receipt the route error packet, the source node

will update the route cache accordingly. The source node will use another route if it is

present in the route cache, otherwise a new route discovery process is initiated.

5.2.4. Packet Formats

The Dynamic Source Routing protocol makes use of a special header, which carries con-

trol information, that can be included in any IP packet. The DSR header in a packet

contains a fixed sized 4 byte section which is followed by a sequence of zero or more

DSR options carrying optional information [19]. The total length of the DSR options is

stored in the DSR header. The DSR header is inserted in the packet following the IP

header and before any transport layer information. Figure5.4 illustrates this.

The format of the IP header will not be modified but some fields in the IP header will

need to be changed to differentiate a DSR packet from a normal IP packet. Figure5.5

shows the IP header with the modified fields shaded in grey. The protocol field is changed

to a unique number indicating that the packet is a DSR packet. As DSR information is

inserted to the packet, the total length of the packet must also be changed. The destination

is changed to a broadcast address for route request packets and when any field in the IP

header changes, the checksum must be recalculated.

The fixed portion of the DSR header shown in Figure5.6 and it contains three fields of

which two are currently used. The next header field is used to record the IP protocol

29

CHAPTER 5. ROUTING PROTOCOL
IMPLEMENTATION

5.2. DSR PROTOCOL IMPLEMENTATION
DETAILS

IP Header Transport Layer Data

Standard IP Packet

DSR OptionsDSR HeaderIP Header Transport Layer Data

IP Packet with DSR information

Figure 5.4.: DSR and IP packet structure

Version IHL Type of Service Total Length

Identification
D
F

M
F

Fragment Offset

Time To Live Protocol Header Checksum

Source Address

Destination Address

Figure 5.5.: IP Header Format

number of the original packet, so when the DSR information is removed at the final des-

tination, the original packet can be constructed. This method is completely transparent to

the upper protocol layers. The payload length field defines the total length of all the DSR

options carried in this packet.

Every DSR option has an option type field and an option length field. The option type

field indicates the type of the option which will determine the format of the option. The

option length field indicates the size of the option. Figure5.7 shows and example of a

DSR option, the route request option. The option type and option length fields are shaded

in grey.

Other DSR options such as, route reply, route error, acknowledgement request, acknowl-

edgement, source route and pad options are specified and described in the DSR Internet-

draft ([19]).

Next Header Reserved Payload Length

Figure 5.6.: Fixed Portion of the DSR Header

30

CHAPTER 5. ROUTING PROTOCOL
IMPLEMENTATION

5.2. DSR PROTOCOL IMPLEMENTATION
DETAILS

Option Type Opt Data Len Identification

Target Address

Address[1]

...

Address[n]

Figure 5.7.: Route Request Option Format

5.2.5. Protocol Optimisations

Many routing optimisations were outlined in the DSR Internet-draft, but only a few basic

optimisations were implemented due to time constraints, and that optimisations were not

necessary for the demonstration of thepicoNet II proof-of-concept. Many optimisations

also required the wireless links to be in promiscuous mode so nodes can cache and process

overheard information.

The few basic optimisations that were implemented involved nodes caching routes from

packets they received or forwarded. This occurs whenever a node propagates a route

request or a route error, and also occurs when a node forwards a packet as they contain

route information. These optimisations reduce the number of route discoveries initiated.

Other protocol optimisations will not be discussed in detail as they are simply more so-

phisticated techniques for reducing routing overhead and they are specified in the DSR

Internet-draft ([19]).

5.2.6. Protocol Modifications

There were two modifications made to the DSR protocol. The first one changed the way

route discoveries were made to nodes outside of a DSR network. The second change was

an extension to the protocol, dealing with IP packet fragmentation. Both of these changes

are detailed below.

5.2.6.1. External Node Route Discovery

The specified method for conducting a route discovery to external nodes (nodes outside

the DSR network) was to initiate a normal route request with the route reply indicating

31

CHAPTER 5. ROUTING PROTOCOL
IMPLEMENTATION

5.3. SYSTEM DESIGN CHOICES

the last hop is external. This meant that a route entry was required for every external

destination.

In conventional network setups, there is usually one gateway machine per subnet to route

between the subnet and external networks. This subnet idea has been applied to the DSR

implementation and means that nodes would simply initiate a route discovery to the gate-

way machine if the destined node is external to the DSR network. This results in one route

entry for all external nodes. The subnet method is less flexible than the method specified

in the draft, as all DSR nodes have to be within the same subnet and only one gateway

can exist, but it is easier to implement.

5.2.6.2. IP Packet Fragmentation

During a packet’s traversal through a network it may go through different MAC technolo-

gies with different maximum frame sizes. IP fragmentation deals with this by splitting

packets which are too big, into smaller fragments and reassembling them again when the

destinations is reached.

The current draft for the DSR protocol ([19]) does not support packet fragmentation. In

order to demonstrate compatibility with existing applications, fragmentation is needed.

Thus fragmentation support was added to the DSR protocol. This extension involved

duplicating the DSR information during packet fragmentation and requesting a separate

network layer acknowledgement for each fragment.

5.3. System Design Choices

This section describes how the protocol implementation interacts with the rest of the sys-

tem and more importantly, the choices made in the design process. As mentioned before,

the netfilter architecture was one of the deciding factors for operating system selection

and it will be presented in detail. Secondly, how the routing protocol is situated in the

operating system will be covered followed by a description of how the protocol interfaces

with the operating system kernel. The final part of this section will describe the choices

made for the development environment.

32

CHAPTER 5. ROUTING PROTOCOL
IMPLEMENTATION

5.3. SYSTEM DESIGN CHOICES

5.3.1. The Netfilter Architecture

Before going into the details of netfilter, we must first look at the networking structure

in Linux. Figure5.8 shows the Linux networking layers for TCP/IP and the IP layer

(shaded in grey) is where the DSR protocol is implemented. The figure also illustrates

that applications in user space access network functionality in the kernel via the use of

sockets. As outlined in the previous section, the DSR protocol will need to manipulate

packets in order to operate correctly.

Netfilter is a framework for packet manipulation at the IP layer and it was introduced in

version 2.4 of the Linux kernel [20]. A set of well defined points in a packet’s traversal of

a protocol stack, called hooks, is defined for each protocol. When a packet passes any of

these hooks, the netfilter framework will be called.

Sections of the kernel can register to listen at these hooks for a particular protocol, so

when the netfilter framework is called, it checks if any functions have been registered for

that particular hook and protocol. If functions are registered at that hook then netfilter

will call the functions in order of priority, and if there are no functions registered to listen

at a hook, the packet continues its normal traversal.

When the functions are called, it may do anything it wishes to that packet. The packet

may be examined, altered, discarded, stolen, queued for user space or continue to tra-

verse through the stack. These functionalities make netfilter a very flexible and extensible

packet manipulation framework. Figure5.9 shows the netfilter hooks defined for IPv4

and the path of packet traversal [21].

The PRE_ROUTE hook is called if the packet received is not a promiscuous receive and

the IP checksum was verified. Next the packet is routed to see if the packet is destined

for another host or the local host. If the packet is destined for the local host then the

LOCAL_IN hook is called before passing the packet to upper layers in the TCP/IP stack.

If the packet is to be forwarded onto another host then theFORWARDhook is called. After

going through theFORWARD hook, thePOST_ROUTE hook is called before the packet is

finally sent out. TheLOCAL_OUT hook is called for packets created by the local host.

How picoNet II uses netfilter will be covered in the next few sections.

5.3.2. Stack Partitioning

Stack partitioning refers to how a protocol stack is divided with respect to the underlying

operating system. In traditional fixed wired routing, the packet forwarding resided in

33

CHAPTER 5. ROUTING PROTOCOL
IMPLEMENTATION

5.3. SYSTEM DESIGN CHOICES

BSD Sockets

INET Sockets

TCP UDP

IP

Ethernet, PPP, 802.11 Bluetooth.

ARP

User Space

Kernel Space

Network Applications

Socket Interface

Protocol Layers

Network Devices

Figure 5.8.: Linux networking layers for TCP/IP

LOCAL_OUT

PRE_ROUTE FORWARD

LOCAL_IN

POST_ROUTEStatic Routing

Static Routing

Figure 5.9.: Netfilter hooks for IPv4

34

CHAPTER 5. ROUTING PROTOCOL
IMPLEMENTATION

5.3. SYSTEM DESIGN CHOICES

kernel space for increased performance and routing table updates ran as a user process so

it was easy for system administrators to manage.

picoNet II was originally based on this model with packet forwarding running as a kernel

process while route discovery and route maintenance ran as a user process. This would

have resulted in the kernel process using netfilter user space queues to communicate with

the user process. Early on during the development process, it was realised that having a

kernel space and user space process introduced unnecessary work and problems as netfil-

ter user space queueing was buggy and under heavy development. As there are no system

administrators for handheld computers, there was no real need to have a user space pro-

cess.

The stack partitioning was modified so the whole DSR protocol was implemented in ker-

nel space using the netfilter architecture. Referring back to Figure5.9, the PRE_ROUTE

andLOCAL_OUT hooks (shaded in grey) were used for the DSR protocol implementation.

An additional hook, thePOST_ROUTE hook, was used for the DSR to IP gateway.

The gateway functionality was not specified in the system specifications but it was im-

plemented as it required little extra work. This was due to the fact that static routing

capabilities was a part of the Linux kernel, and that the netfilter architecture was built

around the static routing. Care had to be taken when developing the DSR protocol im-

plementation to make sure it interacted with the static routing and other netfilter modules

correctly.

5.3.3. Kernel Interfacing

There are two ways to add functionality to a Linux kernel, one is to build the functionality

into the kernel and the other is to build the functionality as a kernel module. If the func-

tionality is built into the kernel then it will be present every time the machine boots, and a

reboot will be required if the kernel is modified. A kernel module on the other hand, can

be inserted into and removed from the kernel at runtime, without a reboot. This is one of

the most attractive features of the Linux kernel.

The DSR protocol was implemented using kernel modules for two main reasons, to pro-

vide users with more flexibility and to reduce development time. It provides users with

flexibility by allowing users to enable or disable the DSR module at anytime, users can

even change networks and re-enable DSR for the new network without rebooting their

machine.

35

CHAPTER 5. ROUTING PROTOCOL
IMPLEMENTATION

5.4. SUMMARY

The development time was cut down greatly by using kernel modules. As the DSR module

was developed, the test cycle would be to copy the kernel module to the iPAQ, insert the

new module and test. If the DSR protocol was built into the kernel then the development

cycle would be time consuming as the whole kernel will need to be compiled, downloaded

onto the iPAQ, rebooted and then tested.

5.3.4. Development Environment

The development environment used was the Linux kernel development environment. Since

the Linux kernel was written in C, the DSR protocol was also implemented in C. The de-

velopment tools consisted of GNU C compiler tools for both the ARM and the Intel x86

architectures and various tools for the iPAQ from handhelds.org ([16]). These tools were

chosen because they were freely available, and they were well supported by the open

source community.

The setup consisted of one x86 PC and three Compaq iPAQs, all running Linux 2.4. The

code, which was developed on the PC, was tested on both the iPAQs and the PC. The PC

was part of a departmental LAN so it acted as the gateway for the DSR network. The

DSR gateway module was developed and tested on the PC.

The DSR network used private IP addresses so in the event of buggy development code,

the departmental LAN would not be affected. The setup was subject to budget limitations

but it was more than adequate for a proof-of-concept project.

5.4. Summary

This chapter reviewed several MANET routing protocol and the Dynamic Source Routing

(DSR) protocol was chosen to be the implemented. The operation of the DSR protocol

and the modifications made were discussed in detail. Next, the chapter described the

Linux networking structure, the netfilter architecture and how netfilter was used for the

implementation of the DSR protocol. The chapter then explained how implementing the

DSR protocol as a Linux kernel module, provided user flexibility and reduced develop-

ment time. Finally, reasons for using the GNU development tools, and a private network

were described. The performance of the system will be evaluated in the next chapter.

36

6. System Evaluation

The resulting solution was able to provide multi-hop capabilities and this chapter eval-

uates the final system both qualitatively and quantitatively. Firstly, the system will be

compared with the specifications outlined in chapter3 followed by an evaluation of the

routing protocol performance. The chapter will finish off with a personal evaluation that

reviews the design and development process.

6.1. Comparison with Specifications

picoNet II met the specification of providing multi-hop capabilities to existing ad hoc net-

works. The chosen platform, Linux on the Compaq iPAQ with IEEE 802.11b wireless

interfaces, is a widely available platform featuring many network applications. The rout-

ing protocol implementation was fully compatible with TCP/IP allowing existing network

applications and protocols to operate seamlessly without modifications. Tested applica-

tions include ping, traceroute, ssh, ftp, nfs and web browsers.

Some unspecified but desirable features such as the ability to enable and disable the rout-

ing protocol on the run, and DSR to IP gateway functionality were developed with little

extra work.

One of the reasons the DSR protocol was chosen to be implemented was its efficiency and

low overhead. As most of the protocol’s optimisations were not implemented, the result-

ing DSR module was fully functional but not the most efficient. Performance improve-

ments of the DSR module will be discussed in chapter7 and the performance analysis of

the DSR module will be discussed in the next section.

37

CHAPTER 6. SYSTEM EVALUATION 6.2. ROUTING PROTOCOL PERFORMANCE

Network Size Not limited by the routing protocol
Network Diameter 15 hops

Hop Range at 11Mbps 25m indoor, 160m outdoor
Hop Range at 1Mbps 50m indoor, 550m outdoor

Maximum Network Range at 11Mbps 375m indoor, 2.4km outdoor
Maximum Network Range at 1Mbps 750m indoor, 8.25km outdoor

Table 6.1.: Network Characteristics

6.2. Routing Protocol Performance

This section will describe the performance of the implemented DSR protocol. The net-

work characteristics will be outlined followed by details of routing performance measure-

ments. Then the multi-hop capabilities of the network will be evaluated followed by a

description of the DSR gateway capabilities.

6.2.1. Network Characteristics

Table6.1 showspicoNet II network characteristics. The network size is the number of

nodes inside the network and this is limited by underlying technologies such as the ad-

dressing range of IPv4 and not limited by the routing protocol. As specified in section3.1

the network diameter was limited to 15 hops so scalability problems would not arise. The

hop ranges shown in the table is based on the Lucent IEEE 802.11b wireless interfaces

at two particular transmission rates [9]. Different transmission rates and wireless inter-

faces will result in different ranges obtained. The maximum network range is simply the

product of the network diameter and the hop range.

From the maximum network ranges, it is feasible to deploy a campus-wide ad hoc network

without additional networking infrastructure. This is quite a good result considering that

3G1 cellular technologies are yet to deliver its promises.

6.2.2. Routing Performance Measures

Table6.2shows the delays introduced by this particular implementation of the DSR pro-

tocol. The route acquisition time is the time taken for a node to discover a route and it

takes 10 ms for a destination that is only one hop away. Destinations further away will

13rd Generation

38

CHAPTER 6. SYSTEM EVALUATION 6.2. ROUTING PROTOCOL PERFORMANCE

Route Acquisition Time 10+ ms
PRE_ROUTE Hook Delay (200MHz ARM) 20 us - 145 us
LOCAL_OUT Hook Delay (200MHz ARM) 55 us - 180 us

PRE_ROUTE Hook Delay (500MHz Pentium III) 8 us - 140 us
LOCAL_OUT Hook Delay (500MHz Pentium III) 15 us - 150 us

Table 6.2.: DSR Protocol Delays

Data Overhead (n is the number of hops) 4 + 24n bytes per packet
Minimum Data Overhead (n = 1) 28 bytes per packet

Maximum Data Overhead (n = 15) 364 bytes per packet
Percent Data Overhead (n=1, total size of packet=1500) 1.87%
Percent Data Overhead (n=15, total size of packet=1500) 24.27%

Table 6.3.: DSR Packet Data Overhead

have longer acquisition times and it will depend on the network topology at the time of

the route discovery.

The table also shows the delay introduced by the extra processing of the packets from the

functions hooked atPRE_ROUTE andLOCAL_OUT. A range of times were produced as

the functions perform various amounts of packet processing.

Table6.3 shows the packet data overhead introduced by the DSR protocol implementa-

tion. These measurements assume that the nodes are relatively stationary and only looks

at overheads introduced by packet forwarding. Overheads introduced by node mobility

are not included here and it will be look at below.

The data overhead, which is 4 + 24n bytes per packet, increases as the packet is forwarded

over longer paths. The rate of increase, which is 24 bytes per hop, is quite high, resulting

in 1.87% to 24.27% of overhead per packet. This inefficiency is due to the use of network

layer acknowledgements. If MAC layer acknowledgements were used, the data overhead

will become 4 + 4n bytes per packet. The overhead per hop will be reduced to 4 bytes per

hop which will translatesto 0.53% to 4.27% of overhead per packet.

Table6.4 shows the relationship between DSR packet overhead and network dynamics.

Qualitative analysis is provided here as quantitative analysis can be difficult. The diffi-

culty comes from the fact that the analysis depends on many factors such as user move-

ment and network usage, not mentioning environmental effects on wireless links. Quan-

titative performance analysis is more suited to network simulations, which is beyond the

scope of this thesis.

The number of route requests sent, heavily depends node mobility and network traffic as

DSR discovers routes on a demand basis. The number of route errors sent is also heavily

39

CHAPTER 6. SYSTEM EVALUATION 6.2. ROUTING PROTOCOL PERFORMANCE

Route Request OverheadIncreases with node mobility and network traffic
Route Reply Overhead Increases with the number of route requests sent
Route Error Overhead Increases with node mobility

Table 6.4.: DSR Packet Overhead

Maximum number of route request resends 16
Maximum route request timeout 10 s

Initial route request timeout 250 ms
Acknowledgement timeout 300 ms

Maximum number of retransmissions 0

Table 6.5.: DSR Protocol Parameters

dependent on node mobility and the number of route replies is proportional to the number

of route requests sent. Complications arises from the fact that route errors can cause route

discoveries to be initiated. For detailed network simulation results, refer to [18].

Table6.5 shows the DSR parameters used to obtain optimum balance between network

performance, and network adaptability to node mobility. Route requests will be resent a

maximum of 16 times with an initial timeout of 250 ms. The timeout doubles each time

until it reaches 10 s. This provides a good balance between route acquisition time and

bandwidth used.

The network layer acknowledgement timeout is 300 ms with no retransmissions. The rea-

son that the timeout is so long and that there are no retransmissions is due to the 802.11b

MAC layer performing retransmissions at the link layer. If retransmissions were con-

ducted at the network layer on top of 802.11b MAC layer retransmissions, performance

will be significantly degraded as the send queue will be held up.

Performance problems were observed with TCP connections, as standard TCP is not wire-

less aware. TCP assumes that lost packets are caused by congestion, and will slow down

unnecessarily when packets have been lost due to the wireless environment. This slow

down occurs when packets are lost during a TCP connection, which can be caused by

users temporarily moving out of range. The slow down is quite severe and very notice-

able to the user. This problem is caused by TCP, not DSR and users can reopen the TCP

connection to get around this problem. A proper solution would be to have a wireless

aware TCP, which is an area of research that is beyond the scope of this thesis.

40

CHAPTER 6. SYSTEM EVALUATION 6.2. ROUTING PROTOCOL PERFORMANCE

Figure 6.1.: Some tested network topologies

6.2.3. Multi-hop Ad Hoc Capabilities

A total of 4 nodes were available for testing, a PC acting as a gateway and 3 Compaq

iPAQs. Only the iPAQs were completely mobile, but relative node mobility was still able

to be achieved. Figure6.1shows some of the tested network topologies. For each of the

tested topologies and the transitions between them, the DSR implementation was able to

adapt and reconfigure itself to the network topology changes. The tests were conducted

with the nodes moving at walking speeds.

Given that the smallest hop range of the 802.11b wireless interfaces was 25 m, difficulties

were introduced to the testing process as a lot of time was wasted walking around placing

the nodes. An improvement to the testing process was needed and the solution was to

wrap a layer of aluminium foil around the antennas of the wireless cards. This reduced

the hop range to around 2 m as metals are reflectors for RF signals, and a tightly wrapped

aluminium foil around the antenna will greatly reduce the signal strength. Figure6.2

shows an iPAQ with its wireless card wrapped in aluminium foil.

6.2.4. Gateway Capabilities

Gateway capabilities were shown to be functional as nodes inside the DSR network were

able to access external non-DSR networks at the IP level. Ping, traceroute and other

41

CHAPTER 6. SYSTEM EVALUATION 6.3. PERSONAL EVALUATION

Figure 6.2.: iPAQ with its wireless card wrapped in aluminium foil

TCP/IP applications were tested and they were able to access external networks. Due to

the fact that the DSR network was using private IP addresses, network address translation

(NAT) needed to be used with the DSR gateway to enable access to external networks,.

The gateway was not tested on a DSR network with real IP addresses, as it involved sig-

nificant changes to the departmental network, but it should be functional. The design

philosophy was followed with the DSR gateway implementation, allowing the NAT mod-

ule to work with the DSR gateway without modifications.

6.3. Personal Evaluation

Many experiences were gained during the design and development of thepicoNet II sys-

tem. The experiences were gained in many areas ranging from programming and debug-

ging skills to problem solving and project management skills.

In the area of technical skills, many skills gained from my studies were put into practice

and new techniques were developed as the project progressed. Working with the Linux

kernel confirmed and extended my understanding of operating systems.

An important lesson in problem solving was learned during the development of the sys-

tem. The lesson was that using source code to solve a problem should be the last resort

and not the first. There was a tendency for me to go to the source code first whenever a

technical problem arose, as the source code was freely available. In one situation, I came

42

CHAPTER 6. SYSTEM EVALUATION 6.4. SUMMARY

across some documentation on the Internet that described the section of source code that

I was looking at. A great deal of time would have been saved if the documentation was

looked at first instead of the source code. That said, there were situations where the source

code was clearer, as documentation can get out of date.

The practice of using a workbook to record design details was developed and it proved

to be very a useful tool. Various other planning and time management skills were also

developed.

Overall, I was satisfied with the outcome of the project as the final result was functional.

The process of researching, designing and implementing a system has developed many of

my skills and I am sure they will prove to be very useful in the future.

6.4. Summary

This chapter evaluated the system against the specifications outlined in chapter3. The

system met the specifications in a qualitative sense. Quantitatively, the overheads intro-

duced by the DSR implementation was not optimal as many DSR protocol optimisations

were not implemented. The multi-hop and gateway capabilities of the system was fully

operational and compatible with TCP/IP. Personally, many skills were developed during

the course of the thesis project, and they should prove to be useful in the future. Future

developments for the thesis project will be discussed in the next chapter.

43

7. Future Developments

This chapter outlines some improvements to thepicoNet II implementation and discusses

possible future extensions.

7.1. Implementation Improvements

There are many improvements which can be made to the DSR protocol implementation.

As mentioned in section6.2.2, MAC layer acknowledgements can be implemented to

reduce the packet data overhead.

The route cache is currently implemented as a simple table storing the full route to each

destination. The route cache data structure can be improved to use a link state organisation

where individual hops are stored in the cache. This can result in a more efficient use of

the routing information, possibly reducing the number or route discoveries.

Currently, the DSR module uses brute force searching and this can be improved by im-

plementing more efficient search techniques such as hashing. Other unimplemented op-

timisations specified in the DSR draft ([19]) can also be implemented to improve various

performance aspects of the DSR module.

7.2. Routing Protocol Extensions

An extension to the DSR protocol called the “flow state” has been specified in a separate

MANET draft standard ([22]). The DSR flow state extension allows the routing of most

packets in a DSR network without adding source route information to each packet. The

extension reduces the overhead of the DSR protocol without changing the fundamental

operations of DSR.

44

CHAPTER 7. FUTURE DEVELOPMENTS 7.3. GLOBAL ROAMING

Alternative routing protocols, such as AODV or TORA, may be used instead of DSR or

in conjunction with DSR, as extensions.

7.3. Global Roaming

A mobile ad hoc network allows nodes to move around freely in a network without los-

ing network connectivity. MANET technologies do not address the problems with node

mobility on fixed networks such as the Internet. Mobile IP ([23]) is a technology that

addresses this problem and allows nodes to roam within and between fixed networks.

Mobile IP enables nodes to roam without changing the operations of the underlying fixed

network.

Coupling MANET and Mobile IP technologies will enable nodes to roam anywhere where

network connectivity exists. MANET technologies will be utilised for roaming within a

subnet and when users roam to a different subnet, MANET technologies will work in

conjunction with Mobile IP to provide transparent network connectivity. This “Global

Roaming” ability can take us one step closer to true pervasive computing.

45

8. Conclusion

picoNet II was designed to provide multi-hop capabilities to existing ad hoc networks. The

system was able to create a dynamic, self-organising, and self-configuring network on the

fly without the aid of any networking infrastructure.

This thesis has demonstrated that it is possible to create extensions to existing technolo-

gies transparently, maintaining full compatibility. Although the implementation was not

the most efficient, it was fully functional and can be used in many real world applications.

The current design presents a useful platform for future extensions, and may take us closer

to realising the vision of pervasive computing, where technology blends seamlessly with

everyday life.

46

A. Source Code Listings

A.1. Software License

Copyright (C) 2001 Alex Song

This program is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.

The author can be contacted via email at s369677@student.uq.edu.au

A.2. Makefile

#Makefile for the dsr kernel module
CCx86=gcc
CCarm=arm-linux-gcc

MODCFLAGS := -O3 -Wall -DCONFIG KERNELD -DMODULE -D KERNEL -DLINUX

HPATHx86 := /usr/src/linux/include
HPATHarm := /home/alex/linux/kernel/include

COMPILEARM := $(CCarm) $(MODCFLAGS) -I$(HPATHarm)
COMPILEX86 := $(CCx86) $(MODCFLAGS) -I$(HPATHx86)

LINKARM := arm-linux-ld -m armelf -r
LINKX86 := ld -m elf i386 -r

COMMONOBJ:= dsr route.o dsr debug.o dsr input.o dsr output.o dsr queue.o
LINKOBJ := dsr-kmodule.o $(COMMONOBJ)
LINKOBJDBG := dsr-kdbg.o $(COMMONOBJ)

SRC := $(wildcard ∗.c)
ARMOBJ := $(SRC:.c=-arm.o)

47

APPENDIX A. SOURCE CODE LISTINGS A.3. DSR.H

X86OBJ := $(SRC:.c=-x86.o)

TARGET := dsrarm.o dsrx86.o dsrarmdbg.o dsrx86dbg.o

all: $(TARGET)

clean:
rm -f ∗.o ∗.d

###arm build
%-arm.d: %.c

$(CCarm) -I$(HPATHarm) -MM $< 2> /dev/null \
| sed ”s/\.o/-arm\.o/” > $@

include $(ARMOBJ:.o=.d)

%-arm.o: %.c
$(COMPILEARM) -c $< -o $@

dsrarm.o: $(LINKOBJ:.o=-arm.o)
$(LINKARM) -o dsrarm.o $(LINKOBJ:.o=-arm.o)

dsrarmdbg.o: $(LINKOBJDBG:.o=-arm.o)
$(LINKARM) -o dsrarmdbg.o $(LINKOBJDBG:.o=-arm.o)

###x86 build
%-x86.d: %.c

$(CCx86) -I$(HPATHx86) -MM $< 2> /dev/null \
| sed ”s/\.o/-x86\.o/” > $@

include $(X86OBJ:.o=.d)

%-x86.o: %.c
$(COMPILEX86) -c $< -o $@

dsrx86.o: $(LINKOBJ:.o=-x86.o)
$(LINKX86) -o dsrx86.o $(LINKOBJ:.o=-x86.o)

dsrx86dbg.o: $(LINKOBJDBG:.o=-x86.o)
$(LINKX86) -o dsrx86dbg.o $(LINKOBJDBG:.o=-x86.o)

A.3. dsr.h

#ifndef DSR H
#define DSR H

/∗ option types ∗/
#define PAD1 0
#define PADN 1
#define ROUTE REQ 2
#define ROUTE REPLY 3

48

APPENDIX A. SOURCE CODE LISTINGS A.4. DSR_HEADER.H

#define ROUTE ERROR 4
#define ACK REQ 5
#define ACK 6
#define SRC ROUTE 7

/∗ ietf draft definitions ∗/
#define BCAST JITTER 20 /∗ milliseconds default 10 ∗/
#define MAX ROUTE LEN 15 /∗ nodes default 15 ∗/
#define ROUTE CACHE TIMEOUT 300 /∗ seconds ∗/

#define SEND BUFFER TIMEOUT 30 /∗ seconds ∗/
#define REQ TABLE SIZE 12 /∗ nodes default 64 ∗/
#define REQ TABLE IDS 16
#define MAX REQ RXMT 16
#define MAX REQ PERIOD 10 /∗ seconds default 10 ∗/
#define REQ PERIOD 250 /∗ milliseconds default 500 ∗/

#define DSR RXMT BUFFER SIZE 300 /∗ packets default 50 ∗/
#define DSR MAXRXTSHIFT 0 /∗ default twice ∗/

/∗ own definitions ∗/
#define ROUTE CACHE SIZE 20 /∗ entries ∗/
#define SEND BUFFER SIZE 50 /∗ packets ∗/
#define NO NEXT HEADER 59 /∗ ipv6 no next header ∗/
#define DSR PROTOCOL 168 /∗ protocol number ∗/
#define ACK TIMEOUT MS 300 /∗ milliseconds 300-500 is good ∗/
#define ACK TIMEOUT JF ((ACK TIMEOUT MS ∗ HZ) / 1000)

#define DSR SUBNET(x) ((x & NETMASK) == NETWORK)
#define NOT DSR SUBNET(x) ((x & NETMASK) != NETWORK)

#endif /∗ DSR H ∗/

A.4. dsr_header.h

#ifndef DSR HEADER H
#define DSR HEADER H

#include <asm/byteorder.h>
#include <linux/types.h>
#include <linux/timer.h>
#include <linux/skbuff.h>
#include ”dsr.h”

struct dsr hdr {
u8 nexthdr;
u8 reserved;
u16 length;

/∗ options start here ∗/
};

49

APPENDIX A. SOURCE CODE LISTINGS A.4. DSR_HEADER.H

struct dsr opt hdr {
u8 type;
u8 len;

};

struct dsr rt req opt {
u8 type;
u8 len;
u16 ident;
u32 taddr;
u32 addr[MAX ROUTE LEN];

};

struct dsr rt reply opt {
u8 type;
u8 len;

#if defined(LITTLE ENDIAN BITFIELD)
u8 reserved:7, lasthopx:1;

#elif defined (BIG ENDIAN BITFIELD)
u8 lasthopx:1, reserved:7;

#else
#error ”Please fix <asm/byteorder.h>”
#endif

u16 ident;
u32 addr[MAX ROUTE LEN];

} attribute ((packed));

struct dsr rt err opt {
u8 type;
u8 len;
u8 errtype;

#if defined(LITTLE ENDIAN BITFIELD)
u8 salvage:4, reserved:4;

#elif defined (BIG ENDIAN BITFIELD)
u8 reserved:4, salvage:4;

#else
#error ”Please fix <asm/byteorder.h>”
#endif

u32 errsaddr;
u32 errdaddr;
u32 typeinfo; /∗ need to change for future route errors ∗/

};

struct dsr ack req opt {
u8 type;
u8 len;
u16 ident;
u32 saddr;

};

struct dsr ack opt {
u8 type;
u8 len;
u16 ident;

50

APPENDIX A. SOURCE CODE LISTINGS A.4. DSR_HEADER.H

u32 saddr;
u32 daddr;

};

struct dsr src rt opt {
u8 type;
u8 len;

#if defined(LITTLE ENDIAN BITFIELD)
u16 segs left:6, salvage:4, reserved:4, lasthopx:1, firsthopx:1;

#elif defined (BIG ENDIAN BITFIELD)
u16 firsthopx:1, lasthopx:1, reserved:4, salvage:4, segs left:6;

#else
#error ”Please fix <asm/byteorder.h>”
#endif

u32 addr[MAX ROUTE LEN];
};

struct dsr pad1 opt {
u8 type;

};

struct dsr padn opt {
u8 type;
u8 len;

/∗ zero filled data ∗/
};

/∗ route cache structures ∗/
struct rt entry {
time t time; /∗ in seconds ∗/
unsigned char segs left;
u32 addr[MAX ROUTE LEN];
u32 dst;

};

struct id fifo {
u32 saddr;

time t time; /∗ in seconds ∗/
u16 id[REQ TABLE IDS];

int head;
int tail;
int len;

};

struct rt req entry {
u32 taddr;

unsigned long time; /∗ in jiffies ∗/
unsigned long timeout;
int n req;
/∗ timer list is 20 bytes ∗/
struct timer list timer;

};

/∗ the following structs has to be smaller than 48 bytes ∗/

51

APPENDIX A. SOURCE CODE LISTINGS A.5. DSR-KMODULE.H

struct rxmt info {
u16 ident;

unsigned int n rxmt;
struct dsr src rt opt ∗ srcrt;
/∗ timer list is 20 bytes ∗/
struct timer list timer;

};

struct jitter send {
/∗ timer list is 20 bytes ∗/
struct timer list timer;

};

struct send info {
u32 fwdaddr;

int (∗output)(struct sk buff ∗);
/∗ timer list is 20 bytes ∗/
struct timer list timer;

};
#endif /∗ DSR HEADER H ∗/

A.5. dsr-kmodule.h

#ifndef DSR KMODULE H
#define DSR KMODULE H

#include <linux/kernel.h>
#include <linux/module.h>

#ifdef KERNEL

#include <linux/netfilter ipv4.h>
#include <linux/netdevice.h>
#include <linux/proc fs.h>
#include <linux/ip.h>
#include <linux/inet.h>
#include <net/checksum.h>
#include <net/ip.h>

#include ”dsrdebug.h”
#include ”dsrheader.h”
#include ”dsrroute.h”
#include ”dsrinput.h”
#include ”dsroutput.h”
#include ”dsrqueue.h”

nf hookfn pre route handler;
nf hookfn local out handler;
nf hookfn gw post route handler;
nf hookfn gw post route out handler;
nf hookfn post route handler;

52

APPENDIX A. SOURCE CODE LISTINGS A.6. DSR-KMODULE.C

nf hookfn local in handler;
int dsr read proc(char ∗ page, char ∗∗ start, off t off, int count,

int ∗ eof, void ∗ data);

#endif /∗ KERNEL ∗/
#endif /∗ DSR KMODULE H ∗/

A.6. dsr-kmodule.c

#include ”dsr-kmodule.h”

MODULE AUTHOR(”Alex Song <s369677@student.uq.edu.au>”);
MODULE DESCRIPTION(”Dynamic Source Routing Kernel Module”);
static char ∗ ifname = ”eth0”;
MODULE PARM(ifname, ”s”);
MODULE PARM DESC(ifname, ”Network interface name. default is eth0.”);
static int gw = 0;
MODULE PARM(gw, ”i”);
MODULE PARM DESC(gw, ”Gateway mode 0 is off 1 is on. default is off.”);

/∗ variables ∗/
static u32 IPADDR;
static u32 NETMASK;
static u32 BCAST;
static u32 NETWORK;
static int hhl;
static struct rt entry rt cache[ROUTE CACHE SIZE];
static int rt cache size = 0;
static struct id fifo rt req ids[REQ TABLE SIZE];
static int rt req ids size = 0;
static struct rt req entry rt req table[REQ TABLE SIZE];
static int rt req table size = 0;
static u16 ack id;
static u16 rtreq id;
static struct sk buff head rxmt q;
static struct sk buff head send q;
static struct sk buff head jitter q;

/∗ statistic variables ∗/
unsigned int stat send q timeout = 0;
unsigned int stat send q drop = 0;
unsigned int stat ack q timeout = 0;
unsigned int stat ack q drop = 0;
unsigned int stat ack q resend = 0;
unsigned int stat send rt err = 0;
unsigned int stat send rt req = 0;
unsigned int stat send rt reply = 0;
unsigned int stat forward pkts = 0;
unsigned int stat add f rt = 0;
unsigned int stat add r rt = 0;
unsigned int stat remove rt = 0;

53

APPENDIX A. SOURCE CODE LISTINGS A.6. DSR-KMODULE.C

unsigned int stat dsr send = 0;
unsigned int stat dsr frag = 0;
unsigned int stat output err = 0;

// struct needed to hook at pre route
static struct nf hook ops pre route = {
{NULL, NULL},
pre route handler,
PF INET,
NF IP PRE ROUTING,
NF IP PRI FIRST,

};
// struct needed to hook at local out
static struct nf hook ops local out = {
{NULL, NULL},
local out handler,
PF INET,
NF IP LOCAL OUT,
NF IP PRI MANGLE,

};
// struct needed to hook at post route for gateway
static struct nf hook ops gw post route = {
{NULL, NULL},
gw post route handler,
PF INET,
NF IP POST ROUTING,
NF IP PRI NAT SRC + 1,

};
// struct needed to hook at post route for gateway
static struct nf hook ops gw post route out = {
{NULL, NULL},
gw post route out handler,
PF INET,
NF IP POST ROUTING,
NF IP PRI FIRST,

};
#ifdef DSR DEBUG
// struct needed to hook at post route
static struct nf hook ops post route = {

{NULL, NULL},
post route handler,
PF INET,
NF IP POST ROUTING,
NF IP PRI FIRST,

};
// struct needed to hook at local in
static struct nf hook ops local in = {
{NULL, NULL},
local in handler,
PF INET,
NF IP LOCAL IN,
NF IP PRI FIRST,

};
#endif

54

APPENDIX A. SOURCE CODE LISTINGS A.6. DSR-KMODULE.C

/∗ initialise the module ∗/
int init module()
{

int i;
struct proc dir entry ∗ proc file;
struct net device ∗ netdev = dev get by name(ifname);
struct in device ∗ indev = in dev get(netdev);

/∗ short circuit if statement ∗/
if (netdev != NULL && indev != NULL && indev->ifa list != NULL) {

#ifdef DSR DEBUG
printk(”local:%u.%u.%u.%u\n”, NIPQUAD(indev->ifa list->ifa local));
printk(”dst:%u.%u.%u.%u\n”, NIPQUAD(indev->ifa list->ifa address));
printk(”mask:%u.%u.%u.%u\n”, NIPQUAD(indev->ifa list->ifa mask));
printk(”bcast:%u.%u.%u.%u\n”, NIPQUAD(indev->ifa list->ifa broadcast));

#endif
IPADDR = indev->ifa list->ifa local;
NETMASK = indev->ifa list->ifa mask;
BCAST = indev->ifa list->ifa broadcast;

} else {
return -1;

}

hhl = netdev->hard header len;
in dev put(indev);
dev put(netdev);

if ((sizeof (struct rxmt info) >= 48) ||
(sizeof (struct jitter send) >= 48) ||
(sizeof (struct send info) >= 48)) {

printk(”struct size error %i %i %i\n”,
sizeof (struct rxmt info),
sizeof (struct jitter send),
sizeof (struct send info));

return -1;
}

/∗ calculate network address ∗/
NETWORK = IPADDR & NETMASK;

/∗ init our route cache ∗/
for (i = 0;i < ROUTE CACHE SIZE;i++)

rt cache[i].dst = 0;

/∗ init our rt req id table ∗/
for (i = 0;i < REQ TABLE SIZE;i++)
rt req ids[i].saddr = 0;

/∗ init our rt req table ∗/
for (i = 0;i < REQ TABLE SIZE;i++)
rt req table[i].taddr = 0;

/∗ nf register hook returns int but seems to be always 0 ∗/

55

APPENDIX A. SOURCE CODE LISTINGS A.6. DSR-KMODULE.C

nf register hook(&pre route);
nf register hook(&local out);
if (gw == 1) {
nf register hook(&gw post route out);
nf register hook(&gw post route);

}

#ifdef DSR DEBUG
nf register hook(&post route);
nf register hook(&local in);

#endif

//printk(”creating proc read entry\n”);
proc file = create proc read entry(”dsr”, 0/∗mode t∗/, &proc root,

dsr read proc, NULL/∗data∗/);

ack id = net random();
rtreq id = net random();
skb queue head init(&rxmt q);
skb queue head init(&send q);
skb queue head init(&jitter q);

//printk(”success\n”);
printk(KERN INFO ”dsr:Dynamic Source Routing activated on %s.\n”, ifname);
if (gw == 1)

printk(KERN INFO ”dsr:Running as a gateway.\n”);
else

printk(KERN INFO ”dsr:Running as a node\n”);
printk(KERN INFO ”dsr:(c) Alex Song <s369677@student.uq.edu.au>\n”);
return 0;// 0 means module succesfully loaded

}

/∗ cleanup module unregister everything ∗/
void cleanup module() {

int i;
struct sk buff ∗ skbptr;

/∗ nf unregister hook returns void ∗/
nf unregister hook(&pre route);
nf unregister hook(&local out);
if (gw == 1) {
nf unregister hook(&gw post route out);
nf unregister hook(&gw post route);

}

#ifdef DSR DEBUG
nf unregister hook(&post route);
nf unregister hook(&local in);

#endif

/∗ clean retransmit queue ∗/
skbptr = skb peek(&rxmt q);
for (i = 0; i < skb queue len(&rxmt q);i++) {

struct rxmt info ∗ rxmtinfo;

56

APPENDIX A. SOURCE CODE LISTINGS A.6. DSR-KMODULE.C

DSR ASSERT(skbptr != NULL);
rxmtinfo = (struct rxmt info ∗) skbptr->cb;
del timer(&(rxmtinfo->timer));
skbptr = skbptr->next;

}
skb queue purge(&rxmt q);

/∗ clean route request timers ∗/
for (i = 0;i < REQ TABLE SIZE;i++) {

if (rt req table[i].taddr != 0) {
del timer(&(rt req table[i].timer));

}
}

/∗ clean send queue ∗/
skbptr = skb peek(&send q);
for (i = 0; i < skb queue len(&send q);i++) {

struct send info ∗ sendinfo;
DSR ASSERT(skbptr != NULL);
sendinfo = (struct send info ∗) skbptr->cb;
del timer(&(sendinfo->timer));
skbptr = skbptr->next;

}
skb queue purge(&send q);

/∗ clean jitter send queue ∗/
skbptr = skb peek(&jitter q);
for (i = 0; i < skb queue len(&jitter q);i++) {

struct jitter send ∗ jittersend;
DSR ASSERT(skbptr != NULL);
jittersend = (struct jitter send ∗) skbptr->cb;
del timer(&(jittersend->timer));
skbptr = skbptr->next;

}
skb queue purge(&jitter q);

//printk(”remove proc entry\n”);
remove proc entry(”dsr”, &proc root);
printk(KERN INFO ”dsr:Dynamic Source Routing deactivated on %s.\n”, ifname);

}

#ifdef DSR DEBUG
unsigned int local in handler(unsigned int hooknum,

struct sk buff ∗∗skb,
const struct net device ∗in,
const struct net device ∗out,
int (∗okfn)(struct sk buff ∗)) {

struct iphdr ∗iph = (∗skb)->nh.iph;

if (DSR SUBNET(iph->saddr)
/∗&& (iph->protocol == DSR PROTOCOL || iph->protocol == 1)∗/) {

printk(”\nlocal in enter\n”);

57

APPENDIX A. SOURCE CODE LISTINGS A.6. DSR-KMODULE.C

dump skb ptr(∗skb);
dump skb(PF INET, ∗skb);

printk(”local in leave\n”);
}
return NF ACCEPT;

}

unsigned int post route handler(unsigned int hooknum,
struct sk buff ∗∗skb,
const struct net device ∗in,
const struct net device ∗out,
int (∗okfn)(struct sk buff ∗)) {

struct iphdr ∗iph = (∗skb)->nh.iph;

if (DSR SUBNET(iph->saddr)
/∗&& (iph->protocol == DSR PROTOCOL || iph->protocol == 1)∗/) {

printk(”\npost route enter\n”);

dump skb ptr(∗skb);
dump skb(PF INET, ∗skb);

printk(”post route leave\n”);
}
return NF ACCEPT;

}
#endif

unsigned int local out handler(unsigned int hooknum,
struct sk buff ∗∗skb,
const struct net device ∗in,
const struct net device ∗out,
int (∗okfn)(struct sk buff ∗)) {

struct iphdr ∗iph = (∗skb)->nh.iph;

if (iph->daddr == IPADDR || NOT DSR SUBNET(iph->saddr)
|| BADCLASS(iph->daddr) || ZERONET(iph->daddr)
|| LOOPBACK(iph->daddr) || MULTICAST(iph->daddr)) {

return NF ACCEPT;

} else {
/∗ if we are here, src must be on dsr network ∗/
struct rtable ∗ rt = (struct rtable ∗) (∗skb)->dst;
struct rt entry ∗ rt ptr;
u32 fwdaddr;

#ifdef DSR DEBUG
printk(”\nlocal out enter\n”);
dump skb ptr(∗skb);
dump skb(PF INET, ∗skb);

#endif

58

APPENDIX A. SOURCE CODE LISTINGS A.6. DSR-KMODULE.C

(∗skb)->nfcache |= NFC UNKNOWN;

/∗ check if we are sending to dsr network or external ∗/
if (DSR SUBNET(iph->daddr)) {
/∗ we are sending to the dsr network ∗/
fwdaddr = iph->daddr;

} else {
/∗ we are sending to external network ∗/
fwdaddr = rt->rt gateway;

}

rt ptr = lookup route(rt cache, fwdaddr);
if (rt ptr == NULL) {

#ifdef DSR DEBUG
printk(”send route discovery\n”);

#endif
send rt req(fwdaddr);
send q add(&send q, ∗skb, SEND BUFFER SIZE, fwdaddr, okfn);
//printk(”leave\n”);
//kfree skb(∗skb);

} else {
dsr send(skb, rt ptr, okfn);

}
#ifdef DSR DEBUG

printk(”local out leave\n”);
#endif

return NF STOLEN;
}

}

unsigned int pre route handler(unsigned int hooknum,
struct sk buff ∗∗skb,
const struct net device ∗in,
const struct net device ∗out,
int (∗okfn)(struct sk buff ∗)) {

struct iphdr ∗iph = (∗skb)->nh.iph;

if (iph->protocol == DSR PROTOCOL) {

const struct dsr hdr ∗ dsrhdr = (struct dsr hdr ∗) ((∗skb)->nh.raw +
(iph->ihl)∗4);

const unsigned char ∗ optstart = (unsigned char ∗) (dsrhdr + 1);
unsigned char ∗ optptr = (unsigned char ∗) (dsrhdr + 1);
struct dsr opt hdr ∗ dsropt;
int ackreq = 0;

#ifdef DSR DEBUG
printk(”\npre route enter\n”);
dump skb ptr(∗skb);
dump skb(PF INET, ∗skb);

#endif

(∗skb)->nfcache |= NFC UNKNOWN;

59

APPENDIX A. SOURCE CODE LISTINGS A.6. DSR-KMODULE.C

(∗skb)->nfcache |= NFC ALTERED;

while (optptr - optstart != ntohs(dsrhdr->length)) {

dsropt = (struct dsr opt hdr ∗) optptr;
//printk(”i:%u len:%u\n”, optptr - optstart, ntohs(dsrhdr->length));
switch (dsropt->type) {
case PAD1:

//printk(”got pad\n”);
break ;

case PADN:
//printk(”got padn\n”);
break ;

case ROUTE REQ:
//printk(”got rt req\n”);
proc rt req opt(∗skb, optptr);
break ;

case ROUTE REPLY:
//printk(”got rt reply\n”);
proc rt reply opt(∗skb, optptr);
break ;

case ROUTE ERROR:
//printk(”got rt err\n”);
proc rt err opt(∗skb, optptr);
break ;

case ACK REQ:
//printk(”got ack req\n”);
proc ack req opt(∗skb, optptr/∗, in∗/);
ackreq = 1;
break ;

case ACK:
//printk(”got ack\n”);
proc ack reply opt(∗skb, optptr);
break ;

case SRC ROUTE:
//printk(”got src rt opt\n”);
//proc src rt opt(∗skb, optptr);
if (proc src rt opt(∗skb, optptr) != 0) {

return NF DROP;
}
break ;

default :
printk(”unknown dsr option %i\n”, dsropt->type);
dump skb ptr(∗skb);
dump skb(PF INET, ∗skb);
return NF DROP;
break ;

}

if (dsropt->type == PAD1)
optptr++;

else
optptr += dsropt->len + 2;

}

60

APPENDIX A. SOURCE CODE LISTINGS A.6. DSR-KMODULE.C

if (iph->daddr == IPADDR || iph->daddr == BCAST) {
//printk(”for us\n”);
if ((iph->ihl)∗4 + ntohs(dsrhdr->length) + 4 >= ntohs(iph->tot len)) {

//printk(”no payload, drop\n”);
return NF DROP;

}
rmv dsr hdr(∗skb);
//okfn(∗skb);
//return NF STOLEN;

} else if (gw == 1 && NOT DSR SUBNET(iph->daddr)) {
stat forward pkts++;
rmv dsr hdr(∗skb);

} else if (iph->ttl == 1) {
//printk(”ttl expired\n”);
/∗ if ttl is about to expire and we are supposed to forward ∗/
rmv dsr hdr(∗skb);

} else {
//printk(”forward packet\n”);
if (ackreq == 1)

ack q add(&rxmt q, ∗skb, DSR RXMT BUFFER SIZE);
stat forward pkts++;
//okfn(∗skb);
//return NF STOLEN;

}
#ifdef DSR DEBUG

printk(”pre route leave\n”);
#endif

return NF ACCEPT;
}
return NF ACCEPT;

}

unsigned int gw post route handler(unsigned int hooknum,
struct sk buff ∗∗skb,
const struct net device ∗in,
const struct net device ∗out,
int (∗okfn)(struct sk buff ∗)) {

struct iphdr ∗iph = (∗skb)->nh.iph;
DSR ASSERT(gw == 1);

if (iph->protocol != DSR PROTOCOL && NOT DSR SUBNET(iph->saddr) &&
DSR SUBNET(iph->daddr)) {

struct rt entry ∗ rt ptr;

//printk(”gw post route:%u.%u.%u.%u d:%u.%u.%u.%u\n”, NIPQUAD(iph->saddr),
// NIPQUAD(iph->daddr));

#ifdef DSR DEBUG
dump skb ptr(∗skb);
dump skb(PF INET, ∗skb);

#endif

/∗ packet from outside dsr net and we are a gateway ∗/

61

APPENDIX A. SOURCE CODE LISTINGS A.6. DSR-KMODULE.C

rt ptr = lookup route(rt cache, iph->daddr);
if (rt ptr == NULL) {

#ifdef DSR DEBUG
printk(”gw send route discovery\n”);

#endif
send rt req(iph->daddr);
send q add(&send q, ∗skb, SEND BUFFER SIZE, iph->daddr, okfn);

} else {
//printk(”gw have route\n”);
dsr send(skb, rt ptr, okfn);

}
return NF STOLEN;

}
return NF ACCEPT;

}

unsigned int gw post route out handler(unsigned int hooknum,
struct sk buff ∗∗skb,
const struct net device ∗in,
const struct net device ∗out,
int (∗okfn)(struct sk buff ∗)) {

struct iphdr ∗iph = (∗skb)->nh.iph;

DSR ASSERT(gw == 1);
if (iph->protocol == DSR PROTOCOL) {
okfn(∗skb);
return NF STOLEN;

}
return NF ACCEPT;

}

/∗ this function is copied from the linux source code fs/proc/proc misc.c ∗/
int proc calc metrics(char ∗page, char ∗∗start, off t off,

int count, int ∗eof, int len) {
if (len <= off+count) ∗eof = 1;
∗start = page + off;
len -= off;
if (len>count) len = count;
if (len<0) len = 0;
return len;

}

int dsr read proc(char ∗page, char ∗∗start, off t off, int count, int ∗eof,
void ∗data) {

int len = 0;
#ifdef DSR DEBUG

int i, j;
#endif

MOD INC USE COUNT;
/∗ stats ∗/
len += sprintf(page + len, ”sendq drop:%u sendq timeout:%u ackq drop:%u”

62

APPENDIX A. SOURCE CODE LISTINGS A.6. DSR-KMODULE.C

”ackq timeout:%u\n”, stat send q drop, stat send q timeout,
stat ack q drop, stat ack q timeout);

len += sprintf(page + len, ”sendrt err:%u sendrt reply:%u”
”addrt f:%u r:%u sendrt req:%u\n”,
stat send rt err, stat send rt reply, stat add f rt,
stat add r rt, stat send rt req);

len += sprintf(page + len, ”forward pkts:%u ackq resend:%u removert:%u”
”outputerr:%u\n”, stat forward pkts, stat ack q resend,
stat remove rt, stat output err);

len += sprintf(page + len, ”dsrsend:%u dsrfrag:%u\n”,
stat dsr send, stat dsr frag);

len += sprintf(page + len, ”sendq len:%i\n”, skb queue len(&send q));
len += sprintf(page + len, ”rxmt q len:%i\n”, skb queue len(&rxmt q));
/∗ dump rt req ids ∗/
len += sprintf(page + len, ”rt reqids len:%i\n”, rt req ids size);

#ifdef DSR DEBUG
for (i = 0;i < REQ TABLE SIZE;i++) {

if (rt req ids[i].saddr != 0) {
len += sprintf(page + len, ”saddr:%u.%u.%u.%u len:%i\n”,

NIPQUAD(rt req ids[i].saddr), rt req ids[i].len);
for (j = 0;j < rt req ids[i].len;j++) {
len += sprintf(page + len, ”%i ”,

rt req ids[i].id[(rt req ids[i].head + j)
% REQ TABLE IDS]);

}
len += sprintf(page + len, ”\n”);

}
}

#endif
/∗ dump rt req table ∗/
len += sprintf(page + len, ”rt reqtable len:%i\n”, rt req table size);

#ifdef DSR DEBUG
for (i = 0;i < REQ TABLE SIZE;i++) {

if (rt req table[i].taddr != 0) {
len += sprintf(page + len, ”taddr:%u.%u.%u.%u nreq:%i”,

NIPQUAD(rt req table[i].taddr), rt req table[i].n req);
len += sprintf(page + len, ”timeout:%i”,

(int)(rt req table[i].timeout ∗1000)/HZ);
len += sprintf(page + len, ”\n”);

}
}

#endif
/∗ dump route cache ∗/
len += sprintf(page + len, ”rt cache len:%i\n”, rt cache size);

#ifdef DSR DEBUG
for (i = 0;i < ROUTE CACHE SIZE;i++) {

if (rt cache[i].dst != 0) {

len += sprintf(page + len, ”%i %u.%u.%u.%u age:%u segs:%u\n”,
i, NIPQUAD(rt cache[i].dst),

63

APPENDIX A. SOURCE CODE LISTINGS A.7. DSR_DEBUG.H

(unsigned int) (CURRENT TIME - rt cache[i].time),
rt cache[i].segs left);

for (j = 0;j < rt cache[i].segs left;j++) {
len += sprintf(page + len, ” %u.%u.%u.%u”,

NIPQUAD(rt cache[i].addr[j]));
}
len += sprintf(page + len, ”\n”);

}
}

#endif
MOD DEC USE COUNT;
DSR ASSERT(len <= count);
return proc calc metrics(page, start, off, count, eof, len);

}

A.7. dsr_debug.h

#ifndef DSR DEBUG H
#define DSR DEBUG H

#include <linux/kernel.h>
#include <linux/module.h>

#ifdef KERNEL

/∗ dump skb includes ∗/
#include <net/ip.h>
#include <net/route.h>
#include <net/tcp.h>
#include <linux/netfilter ipv4.h>

#define DSR ASSERT(x) \
do { \

if (!(x)) { \
printk(”DSRASSERT: %s:%s:%u\n”, \

FUNCTION , FILE , LINE); \
BUG();} \

} while (0)

//#define DSR DEBUG

void dump skb(int pf, struct sk buff ∗skb);
void dump skb ptr(struct sk buff ∗skb);

#endif /∗ KERNEL ∗/
#endif /∗ DSR DEBUG H ∗/

64

APPENDIX A. SOURCE CODE LISTINGS A.8. DSR_DEBUG.C

A.8. dsr_debug.c

#include ”dsrdebug.h”

void dump skb(int pf, struct sk buff ∗skb)
{

const struct iphdr ∗ip = skb->nh.iph;
u32 ∗opt = (u32 ∗) (ip + 1);

int opti;
u16 src port = 0, dst port = 0;

int icmptype = -1;

if (ip->protocol == IPPROTO ICMP)
icmptype = skb->nh.raw[20];

printk(”dsrskb: %s len=%u shared=%u cloned=%u PROTO=%d:%i\n”,
skb->sk ? ”(owned)” : ”(unowned)”,
skb->len, skb shared(skb), skb cloned(skb), ip->protocol, icmptype);

if (ip->protocol == IPPROTO TCP
|| ip->protocol == IPPROTO UDP) {

struct tcphdr ∗tcp=(struct tcphdr ∗)((u32 ∗)ip+ip->ihl);
src port = ntohs(tcp->source);
dst port = ntohs(tcp->dest);

}

printk(”s:%u.%u.%u.%u:%hu d:%u.%u.%u.%u:%hu”
” L=%hu T=%hu S=0x%2.2hX I=%hu F=0x%4.4hX\n”,
NIPQUAD(ip->saddr),
src port, NIPQUAD(ip->daddr),
dst port,
ntohs(ip->tot len), ip->ttl, ip->tos, ntohs(ip->id),
ntohs(ip->frag off));

/∗ dump some stuff after the ip header ∗/
for (opti = 0; opti < 6; opti++)

printk(”O=%8.8X”, ∗opt++);
printk(”\n”);

}

void dump skb ptr(struct sk buff ∗skb) {

const struct rtable ∗ rt = (struct rtable ∗) skb->dst;

if (rt != NULL) {
printk(”route dump: rtsrc %u.%u.%u.%u rtdst %u.%u.%u.%u”
” rt gw %u.%u.%u.%u\n”,
NIPQUAD(rt->rt src), NIPQUAD(rt->rt dst), NIPQUAD(rt->rt gateway));

} else {
printk(”route dump: no route info\n”);

}
}

65

APPENDIX A. SOURCE CODE LISTINGS A.9. DSR_INPUT.H

A.9. dsr_input.h

#ifndef DSR INPUT H
#define DSR INPUT H

#include <linux/skbuff.h>

void rmv dsr hdr(struct sk buff ∗ skb);
int proc src rt opt(struct sk buff ∗skb, unsigned char ∗ optptr);
void proc rt req opt(struct sk buff ∗skb, unsigned char ∗ optptr);
void proc rt reply opt(struct sk buff ∗skb, unsigned char ∗ optptr);
void proc rt err opt(struct sk buff ∗skb, unsigned char ∗ optptr);
void proc ack req opt(struct sk buff ∗skb, unsigned char ∗ optptr);
void proc ack reply opt(struct sk buff ∗skb, unsigned char ∗ optptr);

#endif /∗ DSR INPUT H ∗/

A.10. dsr_input.c

#include ”dsrinput.h”
#include ”dsrheader.h”
#include ”dsrdebug.h”
#include ”dsrroute.h”
#include ”dsroutput.h”

extern u32 IPADDR;
extern u32 NETMASK;
extern u32 NETWORK;
extern int gw;
extern u16 ack id;
extern struct sk buff head rxmt q;
extern struct rt entry rt cache[];
extern struct id fifo rt req ids[];
extern int rt req ids size;

int in rt req(unsigned char ∗ optptr) {

struct dsr rt req opt ∗ rtreq = (struct dsr rt req opt ∗) optptr;
int i;

for (i = 0;i < ((rtreq->len - 6) / 4);i++)
if (rtreq->addr[i] == IPADDR) {

//printk(”in rt req\n”);
return 1;

}
//printk(”not in rt req\n”);
return 0;

}

int lookup rt req id(u32 saddr, u16 id) {

66

APPENDIX A. SOURCE CODE LISTINGS A.10. DSR_INPUT.C

int i, j, count;

//printk(”lookup id %i size %i\n”, id, rt req ids size);

for (i = 0, count = 0; count < rt req ids size;i++) {
if (rt req ids[i].saddr != 0) {
count++;
if (rt req ids[i].saddr == saddr) {

for (j = 0;j < rt req ids[i].len;j++) {
if (rt req ids[i].id[(rt req ids[i].head + j) % REQ TABLE IDS] == id)

return 1;
}
//printk(”not found\n”);
return 0;

}
}

}
//printk(”not found\n”);
return 0;

}

void add rt req id(u32 saddr, u16 id) {

int i, count;

for (i = 0, count = 0;count < rt req ids size;i++) {
if (rt req ids[i].saddr != 0) {
count++;
if (rt req ids[i].saddr == saddr) {

//printk(”add rt req id found saddr\n”);
rt req ids[i].id[rt req ids[i].tail] = id;
rt req ids[i].tail = (rt req ids[i].tail + 1) % REQ TABLE IDS;
if (rt req ids[i].len < REQ TABLE IDS) {
rt req ids[i].len++;

} else {
rt req ids[i].head = (rt req ids[i].head + 1) % REQ TABLE IDS;

}
return ;

}
}

}

/∗ have to crete a new entry or replace an entry ∗/
if (rt req ids size < REQ TABLE SIZE) {

for (i = 0;i < REQ TABLE SIZE;i++) {
if (rt req ids[i].saddr == 0) {

rt req ids[i].saddr = saddr;
rt req ids[i].time = CURRENT TIME;
rt req ids[i].id[0] = id;
rt req ids[i].head = 0;
rt req ids[i].tail = 1;
rt req ids[i].len = 1;
rt req ids size++;
//printk(”add rt req id found empty entry\n”);

67

APPENDIX A. SOURCE CODE LISTINGS A.10. DSR_INPUT.C

return ;
}

}
DSR ASSERT(0);

} else {
int oldest = 0;

for (i = 1;i < REQ TABLE SIZE;i++) {
if (rt req ids[i].time < rt req ids[oldest].time) {

oldest = i;
}

}
rt req ids[oldest].saddr = saddr;
rt req ids[oldest].time = CURRENT TIME;
rt req ids[oldest].id[0] = id;
rt req ids[oldest].head = 0;
rt req ids[oldest].tail = 1;
rt req ids[oldest].len = 1;
//printk(”add rt req id found oldest entry\n”);
return ;

}
}

void rmv dsr hdr(struct sk buff ∗ skb) {

struct iphdr ∗ iph = skb->nh.iph;
struct dsr hdr ∗ dsrhdr = (struct dsr hdr ∗) (skb->nh.raw + (iph->ihl)∗4);
int size = ntohs(dsrhdr->length) + 4;

iph->protocol = dsrhdr->nexthdr;

skb->nh.raw = skb pull(skb, size);
/∗ iph will point to the ”old” header at this moment ∗/
memmove(skb->nh.raw, skb->nh.raw - size, (iph->ihl)∗4);

/∗ set iph to the ”new” header ∗/
iph = skb->nh.iph;
iph->tot len = htons(skb->len);

/∗ recalculate check sum ∗/
ip send check(iph);

}

void proc rt req opt(struct sk buff ∗ skb, unsigned char ∗ optptr) {

struct iphdr ∗ iph = skb->nh.iph;
struct dsr rt req opt ∗ rtreq = (struct dsr rt req opt ∗) optptr;

if (iph->saddr == IPADDR)
return ;

add reverse route(iph->saddr, rtreq->addr, (rtreq->len - 6) / 4);

if (rtreq->taddr == IPADDR) {

68

APPENDIX A. SOURCE CODE LISTINGS A.10. DSR_INPUT.C

#ifdef DSR DEBUG
printk(”send rt reply\n”);

#endif
send rt reply(skb, rtreq);

} else {
if (in rt req(optptr) == 0 &&

lookup rt req id(iph->saddr, rtreq->ident) == 0) {

#ifdef DSR DEBUG
printk(”proc rt req rebroadcasting\n”);

#endif
add rt req id(iph->saddr, rtreq->ident);
rebcast rt req(skb, optptr);

}
}

}

void proc rt reply opt(struct sk buff ∗ skb, unsigned char ∗ optptr) {

const struct iphdr ∗ iph = skb->nh.iph;
struct dsr rt reply opt ∗ rtreply = (struct dsr rt reply opt ∗) optptr;

if (iph->daddr == IPADDR) {
add forward route(iph->saddr, rtreply->addr, (rtreply->len - 3) / 4);

}
}

void proc rt err opt(struct sk buff ∗skb, unsigned char ∗ optptr) {
struct dsr rt err opt ∗ rterr = (struct dsr rt err opt ∗) optptr;
remove route(rt cache, rterr->errsaddr, rterr->typeinfo);

}

void proc ack req opt(struct sk buff ∗ skb, unsigned char ∗ optptr/∗,
const struct net device ∗ dev∗/) {

struct iphdr ∗ iph;
struct dsr ack req opt ∗ ackreq = (struct dsr ack req opt ∗) optptr;

send ack reply(skb, optptr);

/∗
∗ if we are going to forward this packet then update the ack request
∗/
iph = skb->nh.iph;
if (iph->daddr != IPADDR && (gw == 0 || DSR SUBNET(iph->daddr))) {

ack id++;
ackreq->ident = ack id;
ackreq->saddr = IPADDR;

}
}

void proc ack reply opt(struct sk buff ∗skb, unsigned char ∗ optptr) {

const struct dsr ack req opt ∗ ackopt = (struct dsr ack req opt ∗) optptr;

69

APPENDIX A. SOURCE CODE LISTINGS A.10. DSR_INPUT.C

int q len = skb queue len(&rxmt q);
struct sk buff ∗ skbptr;// = skb dequeue(&rxmt q);
struct rxmt info ∗ rxmtinfo;// = (struct rxmt info ∗) skbptr->cb;
int finished = 0;
int i;

/∗ optimisation: add neighbour node to route ∗/
/∗ forward and backward should be the same since route length is zero ∗/
add forward route(skb->nh.iph->saddr, NULL, 0);

if (q len == 0) {
return ;

}

/∗ find and remove the packet from the ack queue ∗/
for (i = 0;i < q len && finished == 0;i++) {
skbptr = skb dequeue(&rxmt q);;
rxmtinfo = (struct rxmt info ∗) skbptr->cb;
DSR ASSERT(skbptr != NULL);
if (ackopt->ident == rxmtinfo->ident) {
finished = 1;
del timer(&(rxmtinfo->timer));
skb unlink(skbptr);
kfree skb(skbptr);

} else {
skb queue tail(&rxmt q, skbptr);

}
}

}

int proc src rt opt(struct sk buff ∗ skb, unsigned char ∗ optptr) {

const struct iphdr ∗ iph = skb->nh.iph;
struct dsr src rt opt ∗ srcopt = (struct dsr src rt opt ∗) optptr;
struct rxmt info ∗ rxmtinfo = (struct rxmt info ∗) skb->cb;
struct rtable ∗ rth;
u32 fwdaddr;

int err;

int n addr; /∗ number of addresses on source route ∗/
int i; /∗ index to the next address to be visited ∗/

n addr = (srcopt->len - 2) / 4;

/∗ don’t process src rt if it is to us or we are the gateway ∗/
if (iph->daddr == IPADDR || (gw == 1 && NOT DSR SUBNET(iph->daddr))) {
add reverse route(iph->saddr, srcopt->addr, n addr);
return 0;

}

/∗ we are not gateway and it is headed for an external node ∗/
if (NOT DSR SUBNET(iph->daddr))
return -1;

70

APPENDIX A. SOURCE CODE LISTINGS A.11. DSR_OUTPUT.H

(srcopt->segs left)--;
i = n addr - srcopt->segs left;
DSR ASSERT(i > 0);

add forward route(iph->daddr, srcopt->addr + i, srcopt->segs left);
add reverse route(iph->saddr, srcopt->addr, i - 1);

/∗ if ttl is about to expire and we are supposed to forward ∗/
if (iph->ttl == 1) {

return 0;
}

rxmtinfo->srcrt = srcopt;
//printk(”rxmtinfo:%u\n”, rxmtinfo);
//printk(”proc src rt rxmtinfo->srcrt:%u\n”, rxmtinfo->srcrt);
if (srcopt->segs left == 0) {

//printk(”route to %u.%u.%u.%u\n”, NIPQUAD(iph->daddr));
/∗ this will also forward the last hop to the gateway correctly as well ∗/
fwdaddr = iph->daddr;

} else {
//printk(”route to %u.%u.%u.%u\n”, NIPQUAD(srcopt->addr[i]));
fwdaddr = srcopt->addr[i];

}

/∗
∗ we know the route right here so we do the routing first using dsr info
∗ and the os won’t route it again since it already routed by us. the os
∗ would not route correctly since it will assume the destination is
∗ reachable since we are on the same subnet.
∗/

if ((err = ip route input(skb, fwdaddr, iph->saddr, iph->tos, skb->dev))) {
printk(”ip routeinput failed dropping packet err:%i\n”, err);
dump skb ptr(skb);
dump skb(PF INET, skb);
return -1;

}

/∗
∗ we are forwarding packets within the same subnet and ip route input
∗ will send icmp redirects at a backed off rate. we don’t really want
∗ this. the next two lines is to stop icmp redirects at ip forward()
∗/
rth = (struct rtable ∗) skb->dst;
DSR ASSERT(rth != NULL);
rth->rt flags &= (~(RTCF DOREDIRECT));
return 0;

}

A.11. dsr_output.h

#ifndef DSR OUTPUT H

71

APPENDIX A. SOURCE CODE LISTINGS A.12. DSR_OUTPUT.C

#define DSR OUTPUT H

#include <linux/skbuff.h>
#include ”dsrheader.h”

void dsr send(struct sk buff ∗∗skb, struct rt entry ∗ dsr rt,
int (∗output)(struct sk buff∗));

void send rt reply(const struct sk buff ∗ skb, struct dsr rt req opt ∗ rtreq);
void send rt err(struct sk buff ∗ skb);
void send rt req(u32 taddr);
void rebcast rt req (const struct sk buff ∗ skb, unsigned char ∗ optptr);
void send ack reply(const struct sk buff ∗ skb, unsigned char ∗ optptr);
int dsr output(struct sk buff ∗skb);

#endif /∗ DSR OUTPUT H ∗/

A.12. dsr_output.c

#include ”dsroutput.h”
#include ”dsrdebug.h”
#include ”dsrroute.h”
#include ”dsrqueue.h”

extern u32 IPADDR;
extern u32 NETMASK;
extern u32 BCAST;
extern u32 NETWORK;
extern int gw;
extern int hhl;
extern u16 ack id;
extern u16 rtreq id;
extern struct sk buff head rxmt q;
extern struct rt entry rt cache[];
extern struct rt req entry rt req table[];
extern int rt req table size;
extern struct sk buff head jitter q;
/∗ stats ∗/
extern unsigned int stat send rt err;
extern unsigned int stat send rt req;
extern unsigned int stat send rt reply;
extern unsigned int stat dsr send;
extern unsigned int stat dsr frag;
extern unsigned int stat output err;

/∗
∗ this function allows us to send packets without traversing
∗ the rest of netfilter. used for dsr specific packets.
∗/

int dsr output(struct sk buff ∗skb) {

struct net device ∗dev = skb->dst->dev;

72

APPENDIX A. SOURCE CODE LISTINGS A.12. DSR_OUTPUT.C

struct dst entry ∗dst = skb->dst;
struct hh cache ∗hh = dst->hh;

skb->dev = dev;
skb->protocol = constant htons(ETH P IP);

if (hh) {
read lock bh(&hh->hh lock);
memcpy(skb->data - 16, hh->hh data, 16);
read unlock bh(&hh->hh lock);
skb push(skb, hh->hh len);
return hh->hh output(skb);

} else if (dst->neighbour)
return dst->neighbour->output(skb);

printk(KERN DEBUG ”dsroutput\n”);
kfree skb(skb);
return -EINVAL;

}

struct sk buff ∗ create dsr packet(int length, u32 daddr) {

struct sk buff ∗ newskb;
struct iphdr ∗ iph;

/∗ 20 for the ip header ∗/
newskb = alloc skb(20+length+hhl+15,GFP ATOMIC);

if (newskb == NULL) {
return NULL;

} else {
skb reserve(newskb, (hhl+15)&~15);
skb put(newskb, 20+length); /∗ iph + dsr stuff ∗/
newskb->nh.raw = newskb->data;

iph = newskb->nh.iph;
iph->version = 4;
iph->ihl = 5;
iph->tos = 0;
iph->frag off = 0;
iph->frag off |= htons(IP DF);
iph->ttl = MAX ROUTE LEN + 1;
iph->daddr = daddr;
iph->saddr = IPADDR;
iph->protocol = DSR PROTOCOL;
iph->tot len = htons(newskb->len);
iph->id = 0;

ip send check(iph);
return newskb;

}
}

void jitter send timeout(unsigned long data) {

73

APPENDIX A. SOURCE CODE LISTINGS A.12. DSR_OUTPUT.C

struct sk buff ∗ skb = (struct sk buff ∗) data;
skb unlink(skb);
dsr output(skb);

}

void jitter send(struct sk buff ∗ skb) {

struct jitter send ∗ jitter = (struct jitter send ∗) skb->cb;

skb queue tail(&jitter q, skb);
init timer(&(jitter->timer));
jitter->timer.function = jitter send timeout;
jitter->timer.data = (unsigned long) skb;
jitter->timer.expires = jiffies +

((net random() % BCAST JITTER) ∗ HZ) / 1000;
add timer(&(jitter->timer));

}

void add ack req opt(unsigned char ∗ buff) {

struct dsr ack req opt ∗ ackreq = (struct dsr ack req opt ∗)(buff);

ackreq->type = ACK REQ;
ackreq->len = 6;
ack id++;
ackreq->ident = ack id;
ackreq->saddr = IPADDR;

}

int add src rt opt(struct sk buff ∗ skb, unsigned char ∗ buff,
const struct rt entry ∗ rt ptr) {

const struct iphdr ∗ iph = skb->nh.iph;
struct dsr src rt opt ∗ srcopt = (struct dsr src rt opt ∗) (buff);
struct rxmt info ∗ rxmtinfo = (struct rxmt info ∗) skb->cb;
int i;
u32 fwdaddr;

DSR ASSERT(rt ptr != NULL);

srcopt->type = SRC ROUTE;
srcopt->segs left = rt ptr->segs left;
srcopt->len = (rt ptr->segs left ∗ 4) + 2;
// not implemented yet
// srcopt->salvage = 0;
// srcopt->reserved = 0;
// srcopt->lasthopx = 0;
// srcopt->firsthopx = 0;

for (i = 0;i < rt ptr->segs left;i++)
srcopt->addr[i] = rt ptr->addr[i];

if (rt ptr->segs left == 0)
fwdaddr = iph->daddr;

74

APPENDIX A. SOURCE CODE LISTINGS A.12. DSR_OUTPUT.C

else
fwdaddr = srcopt->addr[0];

rxmtinfo->srcrt = srcopt;
//printk(”rxmtinfo:%u\n”, rxmtinfo);
//printk(”add src rt rxmtinfo->srcrt:%u\n”, rxmtinfo->srcrt);

if (gw == 1 && DSR SUBNET(fwdaddr) && NOT DSR SUBNET(iph->saddr)) {
/∗ release old route ∗/
dst release(skb->dst);
if (reroute output(skb, IPADDR, fwdaddr) != 0) {
printk(”addsrcrt: route failed\n”);
return -1;

}
} else {

if (reroute output(skb, iph->saddr, fwdaddr) != 0)
return -1;

}
return 0;

}

void dsr options fragment(struct sk buff ∗ skb)
{

unsigned char ∗ optptr = skb->nh.raw;
struct ip options ∗ opt = &(IPCB(skb)->opt);
int l = opt->optlen;
int optlen;

while (l > 0) {
switch (∗optptr) {
case IPOPT END:

return ;
case IPOPT NOOP:
l--;
optptr++;
continue ;

}
optlen = optptr[1];
if (optlen<2 || optlen>l)

return ;
if (!IPOPT COPIED(∗optptr))

memset(optptr, IPOPT NOOP, optlen);
l -= optlen;
optptr += optlen;

}
opt->ts = 0;
opt->rr = 0;
opt->rr needaddr = 0;
opt->ts needaddr = 0;
opt->ts needtime = 0;
return ;

}

void dsr fragment send(struct sk buff ∗skb, int dsrlen, int ackreqoff,

75

APPENDIX A. SOURCE CODE LISTINGS A.12. DSR_OUTPUT.C

int srcrtoff, int (∗output)(struct sk buff∗))
{

struct iphdr ∗iph;
unsigned char ∗raw;
unsigned char ∗ptr;
struct net device ∗dev;
struct sk buff ∗skb2;
unsigned int mtu, hlen, left, len;
int offset;
int not last frag;
struct rtable ∗rt = (struct rtable∗)skb->dst;
int err = 0;

/∗ alex: ∗/
struct rxmt info ∗ rxmtinfo;

dev = rt->u.dst.dev;

/∗ Point into the IP datagram header ∗/
raw = skb->nh.raw;
iph = (struct iphdr∗)raw;

/∗ Setup starting values. ∗/
/∗ alex: +dsrlen ∗/
hlen = iph->ihl ∗ 4 + dsrlen;
left = ntohs(iph->tot len) - hlen; /∗ Space per frame ∗/
mtu = rt->u.dst.pmtu - hlen; /∗ Size of data space ∗/
ptr = raw + hlen; /∗ Where to start from ∗/

/∗ Fragment the datagram. ∗/
offset = (ntohs(iph->frag off) & IP OFFSET) « 3;
not last frag = iph->frag off & htons(IP MF);

/∗ Keep copying data until we run out. ∗/
while (left > 0) {

len = left;
/∗ IF: it doesn’t fit, use ’mtu’ - the data space left ∗/
if (len > mtu)

len = mtu;
/∗ IF: we are not sending upto and including the packet end

then align the next start on an eight byte boundary ∗/
if (len < left) {

len &= ~7;
}
/∗ Allocate buffer. ∗/
if ((skb2 = alloc skb(len+hlen+dev->hard header len+15,

GFP ATOMIC)) == NULL) {
NETDEBUG(printk(KERN INFO ”dsr: frag: no memory for new fragment!\n”));
err = -ENOMEM;
goto fail;

}

/∗ Set up data on packet ∗/
skb2->pkt type = skb->pkt type;

76

APPENDIX A. SOURCE CODE LISTINGS A.12. DSR_OUTPUT.C

skb2->priority = skb->priority;
skb reserve(skb2, (dev->hard header len+15)&~15);
skb put(skb2, len + hlen);
skb2->nh.raw = skb2->data;
skb2->h.raw = skb2->data + hlen;

/∗ Charge the memory for the fragment to any owner it might possess ∗/
if (skb->sk)

skb set owner w(skb2, skb->sk);
skb2->dst = dst clone(skb->dst);
skb2->dev = skb->dev;

/∗ Copy the packet header into the new buffer. ∗/
memcpy(skb2->nh.raw, raw, hlen);

/∗ Copy a block of the IP datagram. ∗/
memcpy(skb2->h.raw, ptr, len);
left -= len;

/∗ Fill in the new header fields. ∗/
iph = skb2->nh.iph;
iph->frag off = htons((offset » 3));

/∗ ANK: dirty, but effective trick. Upgrade options only if
∗ the segment to be fragmented was THE FIRST (otherwise,
∗ options are already fixed) and make it ONCE
∗ on the initial skb, so that all the following fragments
∗ will inherit fixed options.
∗/
if (offset == 0)
dsr options fragment(skb);

/∗
∗ Added AC : If we are fragmenting a fragment that’s not the
∗ last fragment then keep MF on each bit
∗/

if (left > 0 || not last frag)
iph->frag off |= htons(IP MF);

ptr += len;
offset += len;

#ifdef CONFIG NETFILTER
/∗ Connection association is same as pre-frag packet ∗/
skb2->nfct = skb->nfct;
nf conntrack get(skb2->nfct);

#ifdef CONFIG NETFILTER DEBUG
skb2->nf debug = skb->nf debug;

#endif
#endif

/∗ Put this fragment into the sending queue. ∗/
IP INC STATS(IpFragCreates);

iph->tot len = htons(len + hlen);

77

APPENDIX A. SOURCE CODE LISTINGS A.12. DSR_OUTPUT.C

ip send check(iph);

/∗ alex: ∗/
rxmtinfo = (struct rxmt info ∗) skb2->cb;
rxmtinfo->srcrt = (struct dsr src rt opt ∗)
(skb2->nh.raw + srcrtoff);

add ack req opt(skb2->nh.raw + ackreqoff);
/∗ alex: ∗/
ack q add(&rxmt q, skb2, DSR RXMT BUFFER SIZE);

err = output(skb2);
if (err)

goto fail;
}
kfree skb(skb);
//IP INC STATS(IpFragOKs);
//return err;
return ;
fail:
/∗ alex: ∗/
stat output err++;
kfree skb(skb);

#ifdef DSR DEBUG
printk(”dsrfragmentsend failed, err:%i\n”, err);

#endif
return ;
//IP INC STATS(IpFragFails);
//return err;

}

void dsr send(struct sk buff ∗∗skb, struct rt entry ∗ dsr rt,
int (∗output)(struct sk buff∗)) {

struct iphdr ∗ iph = (∗skb)->nh.iph;
struct sk buff ∗ newskb;
struct dsr hdr ∗ dsrhdr;
unsigned char ∗ optptr;
/∗ size is the total amout of stuff added to the packet ∗/
int size = (dsr rt->segs left∗4)+4 + 4 + 8; /∗ src rt + dsrhdr + ackreq ∗/

/∗
∗ nasty nasty nasty !!! need to keep original headroom free
∗ otherwise the kernel will panic and crash
∗ more nasty stuff, must do (size+15)&~15
∗/
newskb = skb copy expand(∗skb, ((size+15)&~15) + skb headroom(∗skb),

skb tailroom(∗skb), GFP ATOMIC);

/∗ can’t allocate extra buffer space ∗/
if (newskb == NULL) {

kfree skb(∗skb);
return;

}

78

APPENDIX A. SOURCE CODE LISTINGS A.12. DSR_OUTPUT.C

/∗ set original owner ∗/
if ((∗skb)->sk != NULL)

skb set owner w(newskb, (∗skb)->sk);

/∗ free old skb ∗/
kfree skb(∗skb);
∗skb = newskb;

(∗skb)->nh.raw = skb push(∗skb, size);

/∗ copy ip header, iph points to the old header ∗/
memmove((∗skb)->nh.raw, (∗skb)->nh.raw + size, (iph->ihl)∗4);

/∗ iph points to the new header now ∗/
iph = (∗skb)->nh.iph;
dsrhdr = (struct dsr hdr ∗) ((∗skb)->nh.raw + (iph->ihl)∗4);
dsrhdr->nexthdr = iph->protocol;
dsrhdr->reserved = 0;
dsrhdr->length = htons(size - 4);
iph->protocol = DSR PROTOCOL;

/∗ set the don’t fragment flag ∗/
iph->frag off |= htons(IP DF);

/∗ change length and recalculate checksum ∗/
iph->tot len = htons((∗skb)->len);
ip send check(iph);

/∗ ip and dsr header is done, now have to add dsr options ∗/
optptr = (unsigned char ∗) (dsrhdr + 1);
add src rt opt(∗skb, optptr, dsr rt);
optptr += dsr rt->segs left ∗ 4 + 4;

/∗ optptr now points to the empty ack req option ∗/
if ((∗skb)->len > (∗skb)->dst->pmtu) {

int ackreqoff = optptr - (∗skb)->nh.raw;
int srcrtoff = ackreqoff - (dsr rt->segs left ∗ 4 + 4);

#ifdef DSR DEBUG
printk(”dsr fragment send\n”);

#endif
/∗ select new id if we need to ∗/
if ((∗skb)->nh.iph->id == 0)

ip select ident((∗skb)->nh.iph, (∗skb)->dst);

stat dsr frag++;
dsr fragment send(∗skb, size, ackreqoff, srcrtoff, output);

} else {
#ifdef DSR DEBUG

printk(”dsr normal send\n”);
#endif

add ack req opt(optptr);
ack q add(&rxmt q, ∗skb, DSR RXMT BUFFER SIZE);
stat dsr send++;

79

APPENDIX A. SOURCE CODE LISTINGS A.12. DSR_OUTPUT.C

if (output(∗skb)) {
stat output err++;

#ifdef DSR DEBUG
printk(”dsr send failed\n”);

#endif
}

}
return ;

}

void finish send rt req(u32 taddr) {

struct iphdr ∗ iph;
struct sk buff ∗ newskb;
struct dsr hdr ∗ dsrhdr;
struct dsr rt req opt ∗ reqopt;

/∗ create rt req packet ∗/
newskb = create dsr packet(4+8, BCAST);

if (newskb != NULL) {
iph = newskb->nh.iph;
dsrhdr = (struct dsr hdr ∗) (newskb->nh.raw + (iph->ihl)∗4);
reqopt = (struct dsr rt req opt ∗) (dsrhdr + 1);

dsrhdr->nexthdr = NO NEXT HEADER;
dsrhdr->length = htons(8);

reqopt->type = ROUTE REQ;
reqopt->len = 6; /∗ 2 + 4 ∗/
reqopt->ident = rtreq id;
rtreq id++;
reqopt->taddr = taddr;

if (reroute output(newskb, iph->saddr, iph->daddr) == 0) {
stat send rt req++;
jitter send(newskb);

} else {
kfree skb(newskb);

}
}

}

void rt req timeout(unsigned long data) {

//printk(”rt req timeout at %u\n”, CURRENT TIME);
DSR ASSERT(data < REQ TABLE SIZE);
if (rt req table[data].n req < MAX REQ RXMT) {

/∗ send another rt req ∗/
finish send rt req(rt req table[data].taddr);
rt req table[data].n req++;

if (rt req table[data].timeout ∗ 2 < (MAX REQ PERIOD ∗ HZ))
rt req table[data].timeout ∗= 2;

80

APPENDIX A. SOURCE CODE LISTINGS A.12. DSR_OUTPUT.C

else
rt req table[data].timeout = (MAX REQ PERIOD ∗ HZ);

rt req table[data].timer.expires = jiffies + rt req table[data].timeout;
add timer(&(rt req table[data].timer));

} else {
/∗ remove rt req entry ∗/
rt req table[data].taddr = 0;
rt req table size--;

}
}

void send rt req(u32 taddr) {

int i;
int oldest = 0;
int empty = 0;
int replace;

for (i = 0;i < REQ TABLE SIZE;i++) {
if (rt req table[i].taddr != 0) {

if (rt req table[i].taddr == taddr) {
//printk(”send rt req found taddr\n”);
return ;

} else {
if (rt req table[i].time < rt req table[oldest].time)
oldest = i;

}
} else {

empty = i;
}

}

if (rt req table size < REQ TABLE SIZE) {
/∗ create new entry ∗/
replace = empty;
rt req table size++;

} else {
/∗ replace old entry ∗/
replace = oldest;
del timer(&(rt req table[oldest].timer));

}

rt req table[replace].taddr = taddr;
rt req table[replace].time = jiffies;
rt req table[replace].timeout = (REQ PERIOD ∗ HZ) / 1000;
rt req table[replace].n req = 1;

init timer(&(rt req table[replace].timer));
rt req table[replace].timer.function = rt req timeout;
rt req table[replace].timer.data = replace;
rt req table[replace].timer.expires = jiffies +

rt req table[replace].timeout;
add timer(&(rt req table[replace].timer));

81

APPENDIX A. SOURCE CODE LISTINGS A.12. DSR_OUTPUT.C

//printk(”finish send\n”);
finish send rt req(taddr);

}

void send rt reply(const struct sk buff ∗ skb, struct dsr rt req opt ∗ rtreq) {

/∗ skb is a rt req packet ∗/
struct iphdr ∗ iph = skb->nh.iph;
struct dsr src rt opt ∗ srcrt;
struct rxmt info ∗ rxmtinfo;
struct dsr rt reply opt ∗ rtreply;
struct dsr padn opt ∗ padn;
struct dsr hdr ∗ dsrhdr;
unsigned char ∗ optptr;
struct sk buff ∗ newskb;
int n addr = (rtreq->len - 6) / 4;
int src rt size = 4 + (n addr ∗ 4);
int rt reply size = 5 + (n addr ∗ 4);
int j;

u32 fwdaddr;

//printk(”send rt err size %i\n”, src rt size);
/∗ dsr hdr + rt reply + ack req + src rt + pad3∗/
newskb = create dsr packet(4+rt reply size+8+src rt size+3, iph->saddr);

if (newskb != NULL) {
iph = newskb->nh.iph;
dsrhdr = (struct dsr hdr ∗) (newskb->nh.raw + (iph->ihl)∗4);
//ackopt = (struct dsr ack opt ∗) (dsrhdr + 1);

dsrhdr->nexthdr = NO NEXT HEADER;
dsrhdr->length = htons(rt reply size+8+src rt size+3);

/∗ pad3 ∗/
optptr = (unsigned char ∗) (dsrhdr + 1);
padn = (struct dsr padn opt ∗) optptr;
padn->type = PADN;
padn->len = 3 - 2;

optptr += 3;
rtreply = (struct dsr rt reply opt ∗) optptr;
rtreply->type = ROUTE REPLY;
rtreply->len = rt reply size - 2;
rtreply->ident = rtreq->ident;
optptr += rt reply size;

//printk(”send err next hop: %u.%u.%u.%u\n”, NIPQUAD(rterr->typeinfo));

/∗ add an ack req to route error message ∗/
add ack req opt(optptr);
optptr += 8; /∗ ack req ∗/

srcrt = (struct dsr src rt opt ∗) optptr;
srcrt->type = SRC ROUTE;

82

APPENDIX A. SOURCE CODE LISTINGS A.12. DSR_OUTPUT.C

srcrt->len = src rt size - 2;
srcrt->segs left = n addr;
for (j = 0;j < n addr;j++) {
rtreply->addr[j] = rtreq->addr[j];
srcrt->addr[j] = rtreq->addr[n addr - j - 1];

}

if (srcrt->segs left == 0)
fwdaddr = iph->daddr;

else
fwdaddr = srcrt->addr[0];

rxmtinfo = (struct rxmt info ∗) newskb->cb;
rxmtinfo->srcrt = srcrt;
//printk(”rxmtinfo:%u\n”, rxmtinfo);
//printk(”send rt reply rxmtinfo->srcrt:%u\n”, rxmtinfo->srcrt);

if (reroute output(newskb, iph->saddr, fwdaddr) == 0) {
stat send rt reply++;
ack q add(&rxmt q, newskb, DSR RXMT BUFFER SIZE);
dsr output(newskb);

} else {
kfree skb(newskb);

}
}

}

void send rt err(struct sk buff ∗ skb) {

struct iphdr ∗ iph = skb->nh.iph;
struct rxmt info ∗ rxmtinfo = (struct rxmt info ∗) skb->cb;
struct dsr rt err opt ∗ rterr;
struct dsr src rt opt ∗ srcrt;
struct dsr hdr ∗ dsrhdr;
unsigned char ∗ optptr;
struct sk buff ∗ newskb;
const struct rtable ∗ rt = (struct rtable ∗) skb->dst;
int n addr; /∗ number of addresses on source route ∗/
int index; /∗ index to the next address to be visited ∗/
int src rt size, j;
u32 fwdaddr;

DSR ASSERT(rt != NULL);
DSR ASSERT(gw == 0 || DSR SUBNET(skb->nh.iph->daddr));

#ifdef DSR DEBUG
printk(”send rt err\n”);

#endif
//printk(”rxmtinfo:%u\n”, rxmtinfo);
//printk(”rxmtinfo->srcrt:%u\n”, rxmtinfo->srcrt);
n addr = (rxmtinfo->srcrt->len - 2) / 4;
index = n addr - rxmtinfo->srcrt->segs left;

if (rxmtinfo->srcrt->segs left == 0) {
if (NOT DSR SUBNET(skb->nh.iph->daddr)) {

83

APPENDIX A. SOURCE CODE LISTINGS A.12. DSR_OUTPUT.C

remove route(rt cache, IPADDR, rt->rt gateway);
} else {

remove route(rt cache, IPADDR, skb->nh.iph->daddr);
}

} else {
remove route(rt cache, IPADDR, rxmtinfo->srcrt->addr[index]);

}

if (index == 0)
return ;

else
src rt size = 4 + (index - 1) ∗ 4;

//printk(”send rt err size %i\n”, src rt size);
/∗ dsr hdr + rt err + ack req + src rt ∗/
newskb = create dsr packet(4+16+8+src rt size, iph->saddr);

if (newskb != NULL) {
iph = newskb->nh.iph;
dsrhdr = (struct dsr hdr ∗) (newskb->nh.raw + (iph->ihl)∗4);
rterr = (struct dsr rt err opt ∗) (dsrhdr + 1);
//ackopt = (struct dsr ack opt ∗) (dsrhdr + 1);

dsrhdr->nexthdr = NO NEXT HEADER;
dsrhdr->length = htons(16+8+src rt size);

rterr->type = ROUTE ERROR;
rterr->len = 16 - 2;
rterr->errtype = 1; /∗ node unreachable ∗/
rterr->errsaddr = IPADDR;
rterr->errdaddr = iph->saddr;

if (rxmtinfo->srcrt->segs left == 0) {
if (NOT DSR SUBNET(skb->nh.iph->daddr)) {
rterr->typeinfo = rt->rt gateway;

} else {
rterr->typeinfo = skb->nh.iph->daddr;

}
} else {

rterr->typeinfo = rxmtinfo->srcrt->addr[index];
}
optptr = (unsigned char ∗) (rterr + 1);

//printk(”send err next hop: %u.%u.%u.%u\n”, NIPQUAD(rterr->typeinfo));

/∗ add an ack req to route error message ∗/
add ack req opt(optptr);
optptr += 8; /∗ ack req ∗/

/∗ need to reverse half of the orig src rt and use that as the src rt ∗/
srcrt = (struct dsr src rt opt ∗) optptr;
srcrt->type = SRC ROUTE;
srcrt->len = src rt size - 2;
srcrt->segs left = index - 1;
for (j = 0;j < srcrt->segs left;j++)

84

APPENDIX A. SOURCE CODE LISTINGS A.12. DSR_OUTPUT.C

srcrt->addr[j] = rxmtinfo->srcrt->addr[index-j-2];

if (srcrt->segs left == 0)
fwdaddr = iph->daddr;

else
fwdaddr = srcrt->addr[0];

rxmtinfo = (struct rxmt info ∗) newskb->cb;
rxmtinfo->srcrt = srcrt;
//printk(”rxmtinfo:%u\n”, rxmtinfo);
//printk(”send rt err rxmtinfo->srcrt:%u\n”, rxmtinfo->srcrt);

if (reroute output(newskb, iph->saddr, fwdaddr) == 0) {
stat send rt err++;
ack q add(&rxmt q, newskb, DSR RXMT BUFFER SIZE);
dsr output(newskb);

} else {
kfree skb(newskb);

}
}

}

void rebcast rt req(const struct sk buff ∗ skb, unsigned char ∗ optptr) {

struct iphdr ∗ iph = skb->nh.iph;
struct dsr rt req opt ∗ rtreq;// = (struct dsr rt req opt ∗) optptr;
const int optoff = optptr - skb->nh.raw;
struct sk buff ∗ newskb;
struct dsr hdr ∗ dsrhdr = (struct dsr hdr ∗) (skb->nh.raw + (iph->ihl)∗4);

newskb = skb copy expand(skb, skb headroom(skb) + 4,
skb tailroom(skb), GFP ATOMIC);

/∗ can’t allocate extra buffer space ∗/
if (newskb == NULL)

return;

newskb->nh.raw = skb push(newskb, 4);

memmove(newskb->nh.raw, newskb->nh.raw + 4,
(iph->ihl)∗4 + 4 + ntohs(dsrhdr->length));

iph = newskb->nh.iph;
dsrhdr = (struct dsr hdr ∗) (newskb->nh.raw + (iph->ihl)∗4);
rtreq = (struct dsr rt req opt ∗) (newskb->nh.raw + optoff);

rtreq->addr[(rtreq->len - 6)/4] = IPADDR;
rtreq->len += 4;

dsrhdr->length = htons(ntohs(dsrhdr->length) + 4);

iph->tot len = htons(newskb->len);
ip send check(iph);

85

APPENDIX A. SOURCE CODE LISTINGS A.13. DSR_QUEUE.H

if (reroute output(newskb, IPADDR, BCAST) == 0) {
jitter send(newskb);

} else {
kfree skb(newskb);

}
}

void send ack reply(const struct sk buff ∗ skb, unsigned char ∗ optptr) {

struct iphdr ∗ iph;
struct dsr ack req opt ∗ ackreq = (struct dsr ack req opt ∗) optptr;
struct dsr hdr ∗ dsrhdr;
struct dsr ack opt ∗ ackopt;
struct sk buff ∗ newskb;

/∗ create ack reply ∗/
DSR ASSERT(skb->dev != NULL);
newskb = create dsr packet(4+12, ackreq->saddr);

if (newskb != NULL) {
iph = newskb->nh.iph;
dsrhdr = (struct dsr hdr ∗) (newskb->nh.raw + (iph->ihl)∗4);
ackopt = (struct dsr ack opt ∗) (dsrhdr + 1);

dsrhdr->nexthdr = NO NEXT HEADER;
dsrhdr->length = htons(12);

ackopt->type = ACK;
ackopt->len = 10;
ackopt->ident = ackreq->ident;
ackopt->saddr = iph->saddr;
ackopt->daddr = iph->daddr;

if (reroute output(newskb, iph->saddr, iph->daddr) == 0) {
dsr output(newskb);

} else {
kfree skb(newskb);

}
}

}

A.13. dsr_queue.h

#ifndef DSR QUEUE H
#define DSR QUEUE H

#include ”dsrheader.h”
#include ”dsrdebug.h”
#include ”dsroutput.h”

void ack q add(struct sk buff head ∗ list, struct sk buff ∗ skb, int q len);

86

APPENDIX A. SOURCE CODE LISTINGS A.14. DSR_QUEUE.C

void send q add(struct sk buff head ∗ list, struct sk buff ∗ skb,
int q len, u32 fwdaddr, int (∗output)(struct sk buff ∗));

#endif /∗ DSR QUEUE H ∗/

A.14. dsr_queue.c

#include ”dsrqueue.h”

extern u16 ack id;
/∗ stats ∗/
extern unsigned int stat send q timeout;
extern unsigned int stat send q drop;
extern unsigned int stat ack q drop;
extern unsigned int stat ack q timeout;
extern unsigned int stat ack q resend;

void send timeout(unsigned long data) {

struct sk buff ∗ skb = (struct sk buff ∗) data;
DSR ASSERT(skb != NULL);

//printk(”send timed out !!!\n”);
stat send q timeout++;
skb unlink(skb);
kfree skb(skb);

}

void send q add(struct sk buff head ∗ list, struct sk buff ∗ skb,
int q len, u32 fwdaddr, int (∗output)(struct sk buff ∗)) {

struct send info ∗ sendinfo;

DSR ASSERT(skb queue len(list) <= q len);
if (skb queue len(list) == q len) {

struct sk buff ∗ headskb = skb dequeue(list);
sendinfo = (struct send info ∗) headskb->cb;
del timer(&(sendinfo->timer));
kfree skb(headskb);
stat send q drop++;

#ifdef DSR DEBUG
printk(”send q too long\n”);

#endif
}

sendinfo = (struct send info ∗) skb->cb;
init timer(&(sendinfo->timer));
sendinfo->fwdaddr = fwdaddr;
sendinfo->output = output;
sendinfo->timer.function = send timeout;
sendinfo->timer.expires = jiffies + (SEND BUFFER TIMEOUT ∗ HZ);

87

APPENDIX A. SOURCE CODE LISTINGS A.14. DSR_QUEUE.C

sendinfo->timer.data = (unsigned long) skb;
add timer(&(sendinfo->timer));
skb queue tail(list, skb);

}

void ack timeout(unsigned long data) {

struct sk buff ∗ skb = (struct sk buff ∗) data;
struct rxmt info ∗ rxmtinfo = (struct rxmt info ∗) skb->cb;
DSR ASSERT(skb != NULL);

#ifdef DSR DEBUG
printk(”ack timed out !!!\n”);
//printk(”rxmtinfo:%u\n”, rxmtinfo);
//printk(”rxmtinfo->srcrt:%u\n”, rxmtinfo->srcrt);

#endif
if (rxmtinfo->n rxmt < DSR MAXRXTSHIFT) {

struct sk buff ∗ newskb;
rxmtinfo->n rxmt++;

#ifdef DSR DEBUG
printk(”resend %i\n”, rxmtinfo->n rxmt);

#endif
rxmtinfo->timer.expires = jiffies + ACK TIMEOUT JF;
add timer(&(rxmtinfo->timer));

if ((newskb = skb clone(skb, GFP ATOMIC)) == NULL)
return ;

stat ack q resend++;
dsr output(newskb);

} else {
#ifdef DSR DEBUG

printk(”send rt err for ack %u\n”, rxmtinfo->ident);
#endif

stat ack q timeout++;
skb unlink(skb);
send rt err(skb);
kfree skb(skb);

}
}

void ack q add(struct sk buff head ∗ list, struct sk buff ∗ skb,
int q len/∗, int (∗output)(struct sk buff ∗)∗/) {

struct sk buff ∗ newskb;
struct rxmt info ∗ rxmtinfo;

DSR ASSERT(skb queue len(list) <= q len);
if (skb queue len(list) == q len) {
stat ack q drop++;
return ;

}

newskb = skb clone(skb, GFP ATOMIC);

88

APPENDIX A. SOURCE CODE LISTINGS A.15. DSR_ROUTE.H

if (newskb == NULL)
return ;

rxmtinfo = (struct rxmt info ∗) newskb->cb;

rxmtinfo->ident = ack id;
rxmtinfo->n rxmt = 0;

init timer(&(rxmtinfo->timer));
rxmtinfo->timer.function = ack timeout;
rxmtinfo->timer.expires = jiffies + ACK TIMEOUT JF;
rxmtinfo->timer.data = (unsigned long) newskb;
add timer(&(rxmtinfo->timer));

skb queue tail(list, newskb);
}

A.15. dsr_route.h

#ifndef DSR ROUTE H
#define DSR ROUTE H

#include <linux/netfilter ipv4.h>
#include <linux/netdevice.h>
#include <linux/proc fs.h>
#include <linux/ip.h>
#include <linux/inet.h>
#include <net/checksum.h>
#include <net/icmp.h>

#include ”dsrheader.h”

int reroute output(struct sk buff ∗skb, u32 src, u32 dst);
void add reverse route(u32 daddr, u32 ∗ addr, int n addr);
void add forward route(u32 daddr, u32 ∗ addr, int n addr);

/∗
∗ look up a route and clean out any expired routes
∗ if a route is found it is set as new if no route is found NULL
∗ is returned
∗/

struct rt entry ∗ lookup route(struct rt entry ∗ rt cache, u32 dst);
void remove route(struct rt entry ∗ rt cache, u32 srchop, u32 dsthop);

#endif /∗ DSR ROUTE H ∗/

A.16. dsr_route.c

#include ”dsrroute.h”

89

APPENDIX A. SOURCE CODE LISTINGS A.16. DSR_ROUTE.C

#include ”dsrdebug.h”
#include ”dsroutput.h”

extern u32 IPADDR;
extern u32 NETMASK;
extern u32 NETWORK;
extern struct sk buff head send q;
extern struct rt entry rt cache[];
extern struct rt req entry rt req table[];
extern int rt cache size;
extern int rt req table size;
extern unsigned int stat add f rt;
extern unsigned int stat add r rt;
extern unsigned int stat remove rt;

/∗ FIXME: change in oif may mean change in hh len. Check and realloc —RR ∗/
/∗ modified from ipv4/netfilter/iptable mangle.c ∗/
int reroute output(struct sk buff ∗skb, u32 src, u32 dst) {

struct iphdr ∗iph = skb->nh.iph;
struct rtable ∗rt;
struct rt key key = { dst:dst,

src:src,
oif:skb->sk ? skb->sk->bound dev if : 0,
tos:RT TOS(iph->tos)|RTO CONN,

};

if (ip route output key(&rt, &key) != 0) {
printk(”dsr rerouteoutput: No more route.\n”);
return -EINVAL;

}

/∗ Drop old route. ∗/
dst release(skb->dst);

skb->dst = &rt->u.dst;
return 0;

}

void remove route(struct rt entry ∗ rt cache, u32 srchop, u32 dsthop) {

int i, j;
stat remove rt++;

#ifdef DSR DEBUG
printk(”rmv rt, srchop:%u.%u.%u.%u dsthop:%u.%u.%u.%u\n”, NIPQUAD(srchop),
NIPQUAD(dsthop));

#endif
/∗
∗ brute force search for now, hash table later
∗ remove every entry with srchop and dsthop
∗/

for (i = 0;i < ROUTE CACHE SIZE;i++) {
if (rt cache[i].dst != 0) {

if (CURRENT TIME - rt cache[i].time < ROUTE CACHE TIMEOUT) {
int finished;

90

APPENDIX A. SOURCE CODE LISTINGS A.16. DSR_ROUTE.C

/∗ start - end - middle ∗/
if (rt cache[i].segs left == 0) {

if (IPADDR == srchop && rt cache[i].dst == dsthop) {
rt cache[i].dst = 0;
rt cache size--;

}
} else if (IPADDR == srchop && rt cache[i].addr[0] == dsthop) {
rt cache[i].dst = 0;
rt cache size--;

} else if (rt cache[i].addr[rt cache[i].segs left - 1] == srchop
&& rt cache[i].dst == dsthop) {

rt cache[i].dst = 0;
rt cache size--;

} else {
finished = 0;
for (j = 0;j < rt cache[i].segs left && finished == 0;j++) {

if (rt cache[i].addr[j] == srchop &&
rt cache[i].addr[j+1] == dsthop) {

rt cache[i].dst = 0;
rt cache size--;
finished = 1;

}
}

}
} else {

/∗ timed out entry, clean it ∗/
rt cache[i].dst = 0;
rt cache size--;

}
}

}
}

void add new forward route(u32 daddr, u32 ∗ addr, int n addr) {

struct rt entry ∗ rt;
int i;

if (rt cache size < ROUTE CACHE SIZE) {
int finished = 0;
rt = rt cache;
/∗ create new entry ∗/
for (i = 0;i < ROUTE CACHE SIZE && finished == 0;i++) {

if (rt cache[i].dst == 0) {
finished = 1;
rt = rt cache + i;

}
}
DSR ASSERT(finished == 1);
rt cache size++;

} else {
int oldest = 0;
/∗ replace oldest entry ∗/
for (i = 1;i < ROUTE CACHE SIZE;i++) {

91

APPENDIX A. SOURCE CODE LISTINGS A.16. DSR_ROUTE.C

if (rt cache[i].dst != 0) {
if (rt cache[i].time < rt cache[oldest].time) {
oldest = i;

}
}

}
rt = rt cache + oldest;

}

rt->dst = daddr;
rt->time = CURRENT TIME;
rt->segs left = n addr;

for (i = 0;i < n addr;i++)
rt->addr[i] = addr[i];

}

void add new reverse route(u32 daddr, u32 ∗ addr, int n addr) {

struct rt entry ∗ rt;
int i;

if (rt cache size < ROUTE CACHE SIZE) {
int finished = 0;
rt = rt cache;
/∗ create new entry ∗/
for (i = 0;i < ROUTE CACHE SIZE && finished == 0;i++) {

if (rt cache[i].dst == 0) {
finished = 1;
rt = rt cache + i;

}
}
DSR ASSERT(finished == 1);
rt cache size++;

} else {
int oldest = 0;
/∗ replace oldest entry ∗/
for (i = 1;i < ROUTE CACHE SIZE;i++) {

if (rt cache[i].dst != 0) {
if (rt cache[i].time < rt cache[oldest].time) {
oldest = i;

}
}

}
rt = rt cache + oldest;

}

rt->dst = daddr;
rt->time = CURRENT TIME;
rt->segs left = n addr;

for (i = 0;i < n addr;i++)
rt->addr[i] = addr[n addr - i - 1];

}

92

APPENDIX A. SOURCE CODE LISTINGS A.16. DSR_ROUTE.C

void remove rt req id(u32 daddr) {
int i, count;

/∗ clear entry in rt req table ∗/
for (i = 0, count = 0;count < rt req table size;i++) {
DSR ASSERT(i < REQ TABLE SIZE);
if (rt req table[i].taddr != 0) {
count++;
if (rt req table[i].taddr == daddr) {

del timer(&(rt req table[i].timer));
rt req table[i].taddr = 0;
rt req table size--;
return ;

}
}

}
return ;

}

void check send q() {

int i;
struct rt entry ∗ rt;
int q len = skb queue len(&send q);
struct sk buff ∗ skbptr;
struct send info ∗ sendinfo;

/∗ see if we can send anything in the send queue ∗/
for (i = 0;i < q len;i++) {
skbptr = skb dequeue(&send q);
sendinfo = (struct send info ∗) skbptr->cb;
DSR ASSERT(skbptr != NULL);
rt = lookup route(rt cache, sendinfo->fwdaddr);
if (rt != NULL) {

del timer(&(sendinfo->timer));
/∗ dsr send should free the skb ∗/
dsr send(&skbptr, rt, sendinfo->output);

} else {
skb queue tail(&send q, skbptr);

}
}

}

int have route(u32 daddr, u32 ∗ addr, int n addr) {

int i, j;

/∗ look through all the routes to see if we already have the SAME route ∗/
for (i = 0;i < ROUTE CACHE SIZE;i++) {

if (rt cache[i].dst != 0) {
if (CURRENT TIME - rt cache[i].time < ROUTE CACHE TIMEOUT) {

if (rt cache[i].dst == daddr && rt cache[i].segs left == n addr) {
int diff = 0;

93

APPENDIX A. SOURCE CODE LISTINGS A.16. DSR_ROUTE.C

for (j = 0;j < n addr && diff == 0;j++) {
/∗ route is different ∗/
if (rt cache[i].addr[j] != addr[j])

diff = 1;
}
/∗ if the route is the same then we return ∗/
if (diff == 0) {

rt cache[i].time = CURRENT TIME;
return 1;

}
}

} else {
/∗ timed out entry, clean it ∗/
rt cache[i].dst = 0;
rt cache size--;

}
}

}
return 0;

}

/∗ addr can be null ∗/
void add reverse route(u32 daddr, u32 ∗ addr, int n addr) {

int i;
stat add r rt++;

for (i = 0;i < n addr;i++) {
if (have route(addr[n addr - i - 1], addr + n addr - i, i) == 0) {
add new reverse route(addr[n addr - i - 1], addr + n addr - i, i);
remove rt req id(addr[n addr - i - 1]);

}
}

if (DSR SUBNET(daddr) && have route(daddr, addr, n addr) == 0) {
add new reverse route(daddr, addr, n addr);
remove rt req id(daddr);

}
check send q();

}

/∗ addr can be null ∗/
void add forward route(u32 daddr, u32 ∗ addr, int n addr) {

int i;
stat add f rt++;

for (i = 0;i < n addr;i++) {
if (have route(addr[i], addr + i - 1, i) == 0) {
add new forward route(addr[i], addr + i - 1, i);
remove rt req id(addr[i]);

}
}

94

APPENDIX A. SOURCE CODE LISTINGS A.16. DSR_ROUTE.C

if (DSR SUBNET(daddr) && have route(daddr, addr, n addr) == 0) {
add new forward route(daddr, addr, n addr);
remove rt req id(daddr);

}
check send q();

}

struct rt entry ∗ lookup route(struct rt entry ∗ rt cache, u32 dst) {

int i;
struct rt entry ∗ rt ptr = NULL;

/∗
∗ brute force search for now, hash table later
∗ the most current entry with the smallest hop count will be used
∗/

for (i = 0;i < ROUTE CACHE SIZE;i++) {
if (rt cache[i].dst != 0) {

if (CURRENT TIME - rt cache[i].time < ROUTE CACHE TIMEOUT) {
if (rt cache[i].dst == dst) {
/∗ found an entry ∗/
if (rt ptr == NULL)
rt ptr = rt cache + i;

else if (rt cache[i].segs left < rt ptr->segs left)
rt ptr = rt cache + i;

else if (rt cache[i].segs left == rt ptr->segs left)
if (time after(rt cache[i].time, rt ptr->time))
rt ptr = rt cache + i;

}
} else {

/∗ timed out entry, clean it ∗/
rt cache[i].dst = 0;
rt cache size--;

}
}

}

/∗ refresh the route we found ∗/
if (rt ptr != NULL)
rt ptr->time = CURRENT TIME;

return rt ptr;
}

95

References

[1] A. Siu, “Piconet a wireless ad-hoc network for mobile handheld devices,” Master’s
thesis, University of Queensland, St Lucia, Dept. Computer Science and Electrical
Engineering, 2000.

[2] I. Keys, “Piconet a wireless ad-hoc network for mobile handheld devices,” Master’s
thesis, University of Queensland, St Lucia, Dept. Computer Science and Electrical
Engineering, 2000.

[3] S. Corson and J. Macker, “Mobile ad hoc networking (manet): Routing protocol
performance issues and evaluation considerations.”http://www.ietf.org/rfc/
rfc2501.txt, January 1999.

[4] A. S. Tanenbaum,Computer Networks. Prentice-Hall, 3rd ed., 1996.

[5] IETF, “Mobile ad-hoc networks (manet).”http://www.ietf.org/html.
charters/manet-charter.html, April 2001.

[6] P. Misra, “Routing protocols for ad hoc mobile wireless networks.”
ftp://ftp.netlab.ohio-state.edu/pub/jain/courses/cis788-99/adhoc_
routing/index.html, June 2001.

[7] Bluetooth-SIG, “Specification of the bluetooth system, vol. 1, core.”
http://www.bluetooth.com/developer/specification/Bluetooth_11_
Specifications_Book.pdf, Feburary 2001. Version 1.1.

[8] Bluetooth-SIG, “Specification of the bluetooth system, vol. 1, core.”
http://www.bluetooth.com/developer/specification/Bluetooth_11_
Specifications_Book.pdf, Feburary 2001. Version 1.1.

[9] Lucent, “Orinoco pc card data sheet.”ftp://ftp.orinocowireless.com/pub/
docs/ORINOCO/BROCHURES/O_PC.pdf, March 2001.

[10] The-NetBSD-Foundation, “The netbsd project.”http://www.netbsd.org, March
2001.

[11] The-NetBSD-Foundation, “Netbsd licensing and redistribution.”http://www.
netbsd.org/Goals/redistribution.html, October 2001.

[12] Linux-Online, “Gnu general public license.”http://www.linux.org/info/gnu.
html, October 2001.

96

http://www.ietf.org/rfc/rfc2501.txt
http://www.ietf.org/rfc/rfc2501.txt
http://www.ietf.org/html.charters/manet-charter.html
http://www.ietf.org/html.charters/manet-charter.html
ftp://ftp.netlab.ohio-state.edu/pub/jain/courses/ cis788-99/adhoc_routing/index.html
ftp://ftp.netlab.ohio-state.edu/pub/jain/courses/ cis788-99/adhoc_routing/index.html
http://www.bluetooth.com/developer/ specification/Bluetooth_11_Specifications_Book.pdf
http://www.bluetooth.com/developer/ specification/Bluetooth_11_Specifications_Book.pdf
http://www.bluetooth.com/developer/ specification/Bluetooth_11_Specifications_Book.pdf
http://www.bluetooth.com/developer/ specification/Bluetooth_11_Specifications_Book.pdf
ftp://ftp.orinocowireless.com/pub/docs/ORINOCO/BROCHURES/O_PC.pdf
ftp://ftp.orinocowireless.com/pub/docs/ORINOCO/BROCHURES/O_PC.pdf
http://www.netbsd.org
http://www.netbsd.org/Goals/redistribution.html
http://www.netbsd.org/Goals/redistribution.html
http://www.linux.org/info/gnu.html
http://www.linux.org/info/gnu.html

References References

[13] Palm, “Palm os.”http://www.palmos.com, March 2001.

[14] C. Comstock, “Palm linux environment.”http://palm-linux.sourceforge.
net, May 2001.

[15] J. Dionne and M. Durrant, “uclinux.”http://www.uclinux.org, March 2001.

[16] handhelds.org, “handhelds.org.”http://www.handhelds.org, March 2001.

[17] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc wireless net-
works,” in Mobile Computing(T. Imielinski and H. Korth, eds.), ch. 5, pp. 153–181,
Kluwer Academic Publishers, 1996.

[18] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, “A performance
comparison of multi-hop wireless ad hoc network routing protocols,” inProceedings
of the Fourth Annual ACM/IEEE International Conference on Mobile Computing
and Networking, (Dallas, Texas), ACM, October 1998.

[19] D. B. Johnson, D. A. Maltz, and Y.-C. Hu, “The dynamic source routing pro-
tocol for mobile ad hoc networks.”http://www.ietf.org/internet-drafts/
draft-ietf-manet-dsr-05.txt, March 2001. Work in progress.

[20] P. Russell, “Linux netfilter hacking howto.”http://netfilter.samba.org/
unreliable-guides/netfilter-hacking-HOWTO/index.html, May 2001.

[21] D. A. Rusling, “The linux kernel.”http://www.linuxdoc.org/LDP/tlk/tlk.
html, June 2001.

[22] D. B. Johnson, D. A. Maltz, and Y.-C. Hu, “Flow state in the dynamic
source routing protocol for mobile ad hoc networks.”http://www.ietf.org/
internet-drafts/draft-ietf-manet-dsrflow-00.txt, February 2001. Work
in progress.

[23] Mobile-IP-Working-Group, “Ip routing for wireless/mobile hosts (mobileip).”
http://www.ietf.org/html.charters/mobileip-charter.html, March
2001.

97

http://www.palmos.com
http://palm-linux.sourceforge.net
http://palm-linux.sourceforge.net
http://www.uclinux.org
http://www.handhelds.org
http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-05.txt
http://netfilter.samba.org/ unreliable-guides/netfilter-hacking-HOWTO/index.html
http://netfilter.samba.org/ unreliable-guides/netfilter-hacking-HOWTO/index.html
http://www.linuxdoc.org/LDP/tlk/tlk.html
http://www.linuxdoc.org/LDP/tlk/tlk.html
http://www.ietf.org/internet-drafts/draft-ietf-manet-dsrflow-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-manet-dsrflow-00.txt
http://www.ietf.org/html.charters/mobileip-charter.html

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	The picoNet II Vision
	Problems with Current Mobile Networks
	Proposed Solution
	Thesis Structure

	Background
	Mobile Networks
	Network Reference Models
	The Routing Concept
	Mobile Ad Hoc Network (MANET) Characteristics

	Current MANET Research
	Commercial Products
	Bluetooth
	IEEE 802.11b
	Current Products Comparison

	picoNet II Specifications
	Functional Overview of picoNet II
	Routing Protocol Requirements
	Software Requirements
	Hardware Requirements
	System Block Diagram
	Summary

	System Selection
	Operating System Selection
	Windows Pocket PC
	NetBSDBerkeley Software Distribution
	Linux
	Operating System Choice

	Mobile Handheld Selection
	Palm OS based PDAPersonal Digital Assistant s
	Pocket PC based PDAs
	Mobile Handheld Choice

	Wireless Interface Selection
	Bluetooth
	IEEE 802.11b
	Wireless Card Choice

	Summary

	Routing Protocol Implementation
	Routing Protocols
	Ad hoc On-demand Distance Vector (AODV) Routing
	Temporally Ordered Routing Algorithm (TORA)
	Dynamic Source Routing (DSR)
	Protocol Selection

	DSR Protocol Implementation Details
	Route Discovery
	Packet Forwarding
	Route Maintenance
	Packet Formats
	Protocol Optimisations
	Protocol Modifications

	System Design Choices
	The Netfilter Architecture
	Stack Partitioning
	Kernel Interfacing
	Development Environment

	Summary

	System Evaluation
	Comparison with Specifications
	Routing Protocol Performance
	Network Characteristics
	Routing Performance Measures
	Multi-hop Ad Hoc Capabilities
	Gateway Capabilities

	Personal Evaluation
	Summary

	Future Developments
	Implementation Improvements
	Routing Protocol Extensions
	Global Roaming

	Conclusion
	Source Code Listings
	Software License
	Makefile
	dsr.h
	dsr_header.h
	dsr-kmodule.h
	dsr-kmodule.c
	dsr_debug.h
	dsr_debug.c
	dsr_input.h
	dsr_input.c
	dsr_output.h
	dsr_output.c
	dsr_queue.h
	dsr_queue.c
	dsr_route.h
	dsr_route.c

	References

